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This document explains how to combine evidence using what’s called naı̈ve Bayes: the assumption
of conditional independence (even though we might know that the data aren’t exactly conditionally
independent). So, the probability we get won’t be accurate, but it should at least be a probability and
should correlate with the information we want, namely the probability that a message is spam.

I’m basing all this on Russell and Norvig’s AI book, section 14.4 (first edition), plus personal com-
munication with David D. Lewis (http://daviddlewis.com). I’ve re-written this document thanks
to an email from Ethan Herdrick, who helpfully pointed out that my previous document was not clear.

The context of this problem is spam filters, an honors thesis conducted by Sara “Scout” Sinclair
under my supervision. We want to train a Bayesian classifier to classify email. Let’s start with an
example:

ham spam total
all messages 400 600 1000
with “free” 100 300 400
with “viagra” 10 90 100

The basic application of Bayes’ rule allows us to calculate the probability that a message is spam
given that it contains any one token.
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Our prior probability of spam (given the training data) is 0.6, and if we see a message containing
the word “free,” we bump that up to 0.75 and if we see “viagra” we bump it up to 0.90.

1 Multiple Evidence
The question is how to combine multiple pieces of evidence. That is, if I see a message with both “free”
and “viagra,” what is my probability calculation?

Translating Russell and Norvig’s example (spam=cavity, toothache=free, catch=viagra), I start with
the following equation, which doesn’t assume conditional independence. This equation is a straight-
forward application of Bayes’ rule for two pieces of evidence (“free” and “viagra”), and is isomophic to
the one in the middle of page 428 of Russell and Norvig:

���������
	�� $&%'�&�BA�:�;)��<2%C�=�D� ���?$&%'�&�BAE:�;)��<�%'�F�9�����
	��G�������5�2	��
���G:�;)��<2%'�HAI$&%'�&�
� (1)

1



There are several problems with this equation. The first is the denominator: we are not going to
record and train on all subsets of words (let’s stipulate that), so the probability of “viagra” co-occuring
with “free” is unknown. The same problem is on the numerator, where we would need to know the
probability of that pair of terms co-occurring in a spam message.

2 Conditional Independence
One approach is to make the assumption of conditional independence. (Russell and Norvig describe
this on page 429; thanks to David Lewis for explaining normalization to me.)

Conditional independence means that once you know one piece of information, other features be-
come independent. One classic example is that spelling ability and shoe size are not independent:
people with larger feet spell better than people with smaller feet. The missing piece of information is
age: older kids have larger feet and better spelling. Once you know a child’s age, their spelling ability
and shoe size are unrelated (independent). When two features are conditionally independent, we can
calculate their co-occurrence as a simple multiplication. The general statement is as follows:
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For the spam problem, our assumption is that the occurrence of the words “free” and “viagra”
become independent once we know whether the message is spam. (Again, this assumption is probably
wrong, but we make it anyhow, because we won’t count how many times the words co-occur.)

Now, we make our assumption of conditional independence. Applying equation (2) to the numerator
of equation (1), we get:
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In words, this means that for spam messages, we expect “viagra” and “free” to be independent, so
the probability of their co-occurrence in a spam message is just the product of their conditional proba-
bilities. (You may or may not agree with the assumption, but that’s what it means.) Thus equation (1)
becomes:
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We have in our database everything except the second denominator,
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, Russell and
Norvig explain that, we can eliminate this term with normalization, which uses the conditional prob-
abilities and the assumption of conditional independence to calculate this term.

The derivation takes several steps, so be patient. First, we state Bayes’ rule for two pieces of
evidence, as in equation (1), once for each kind of message:
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The two equations sum to 1, since the message is certainly either ham or spam. (This idea can
be generalized; see Russell and Norvig.) We can then multiply the whole equation by the common
denominator and the left hand side is exactly what we want, namely the unknown denominator in
equation (4).
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This replaces the calculation of the joint probability
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, which we don’t know, with a cal-
culation involving conditional probabilities. We can proceed by employing, once again, the assumption
of conditional independence. Thus:
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This, then, is the desired denominator for our probability calculation. Note that the first term is the
same as our numerator, the other term is the analogous calculation conditioned on ham rather than
spam. The final formula, then, for two pieces of evidence is:

�������5�2	 � $&%'�&� A�:�;)��<2%'�=�B� �����"���
	��G����$&%'�&�=�!���5�2	�������:�;)��<�%'�F�!���5�2	��
���������
	��G����$&%'�&�=�!�"���
	��G����:�;)��<�%'�F�!�"���
	�� 
 ��� �5�
	��G����$&%'�&�=� �5�2	�������:�;)��<�%'�#� �5�2	�� (5)

3 Example
With the example we have, we can compute:
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With “free,” we computed the probability that the message was spam to be 75 percent, and with
“viagra,” we computed a probability of 90 percent, but, with both tokens, the probability that the
message is spam goes up to 95 percent.

4 General Combinations
Let’s look at how this generalizes to many tokens.

ham spam
all messages � �
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	�	 �
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Also, let � � � 
�� , which is just the total number of training messages.
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At this point, we can do some algebraic simplifications (such as eliminating the
-@+ � in the numer-

ator and denominator), but the basic calculation is clear.



5 Bayes vs Graham
I now think we can understand the difference between our calculation, which we believe is correct, and
Paul Graham’s. His formula looks similar but has some key differences.

Let � � � � � + � be the conditional probability that a message contains token � , given that the message
is spam and � � � � � + � be the conditional probability that a message contains token � given that the
message is ham. Our formula is
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While Graham’s formula is:
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We see two differences. First, his formula omits the prior probabilities, or, more precisely, he as-
sumes that the prior probability of spam and ham are equal at 0.5, so they cancel. This is a reasonable,
defensible position. The other difference is that his formula supposes that � � � -�� � �

, which is not true.
In our example, for instance,
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