The Pumping Lemma

A Technique for Proving that Languages are Nonregular

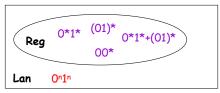
> Tuesday, October 18, 2011 Reading: Sipser 1.4, Stoughton 3.13

CS235 Languages and Automata

Department of Computer Science Wellesley College

Nonregular Languages: Overview

1. Not all languages are regular! As an example, we'll show the language $\{0^n1^n \mid n \text{ in Nat}\}\$ is not regular.



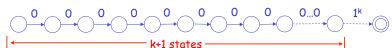
- 2. Generalize the technique for #1 by developing the pumping lemma.
- 3. Give examples of using the pumping lemma (sometimes in conjunction with closure properties of regular languages) to prove-by-contradiction that certain languages aren't regular.

The Pumping Lemma 20-2

Onln is Not a Regular Language

Proof by Contradiction: Suppose Oⁿ1ⁿ *is* a regular language. Then it is accepted by a DFA. Suppose the DFA has k states.

Now consider the labeled path for accepting the string 0^k1^k :



By the pigeonhole principle, 2 of the first k+1 states must be the same:

So the path has the form:
$$0^b$$
 where $a + b + c = k$ and $b > 0$

This means the DFA also accepts strings $0^a0^{ib}0^c1^k$ for any $i \in Nat$. But for $i \neq 1$, these strings do not have the form $O^n 1^n$ for some n. This contradicts the assumption that there is a DFA for $0^{n}1^{n}$. X

The Pumping Lemma 20-3

Generalizing the Technique: Intuition

Suppose L is an infinite regular language.

Any regular expression for L must contain a "nontrivial" * (i.e., after weak simplification).

So it is accepted by an FA (and a DFA) with at least one loop.

Any sufficiently long string $s \in L$ must traverse some loop, and so can be decomposed into xyz, where y is nonempty and $xy'z \in L$ for any $i \in Nat$.

We say that the substring y of scan be **pumped**.

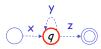
Generalizing the Technique: The Pumping Lemma

The Pumping Lemma

If L is a regular language, there is a number p (the pumping length) such that any string $s \in L$ with length $\geq p$ can be expressed as xyz. where:

- 1. |y| > 0
- $2. |xy| \leq p$
- 3. $xy^{i}z \in L$ for each $i \in Nat$.

Proof sketch: Let p be the number of states in a DFA for L and a be the first repeated state in the path for s (which must exist by the pigeonhole principle). Use q to divide s into xyz.



The Pumping Lemma 20-5

Using the Pumping Lemma to Prove L Nonregular

The pumping lemma says every sufficiently long string in a regular language has a parse that can be pumped and still be in the language.

To prove a language nonregular, we just need to find one counterexample string!

Towards a contradiction, assume L is regular.

By the pumping lemma, there is a p such that all strings $s \in L$ with length $\geq p$ can be pumped.

Find **some** string $s \in L$ with length $\geq p$ for which pumping is problematic. I.e., every decomposition of s into xyz with |y| > 0and $|xy| \le p$ leads to a string $xy'z \notin L$ for **some** $i \in Nat$.

Therefore, the assumption that L is regular is false. X

The Pumping Lemma 20-6

Game vs. Demon

Using the pumping lemma to prove a language nonregular can be viewed as a game vs. a demon:

- 1. You: give the demon the language L
- 2. Demon: gives you p
- 3. You: give the demon string $s \in L$ with $|s| \ge p$.
- 4. Demon: divides s into xyz such that |y| > 0 and $|xy| \le p$
- 5. You: give the demon an i such that $xy^{i}z \notin L$.

Notes:

- •The demon will make your task as difficult as possible in step #4. He gets to chose the worst possible parse of s into xyz. You do not get to choose a parse that happens to be good for you.
- •A clever choice of s in step #3 can tie the demon's hands in step #4, and make your life much easier in step #5.

$L_1 = \{O^n1^n \mid n \in Nat\}$ revisited

Viewed as game vs. a demon:

- 1. You: give the demon the language L₁
- 2. Demon: gives you p
- 3. You: give the demon a string $s \in L_1$ with $|s| \ge p$. E.g.:

 $s_1 = O^{p/2}1^{p/2}$ (for simplicity, assume p is even)

s2 = OP1P

- 4. Demon: divides s into xyz such that |y| > 0 and $|xy| \le p$.
- 5. You: give the demon an i such that $xy'z \notin L_1$

Moral: Since you get to pick string s, choose one that saves you work!

The Pumping Lemma 20-8

The Pumping Lemma 20-7

How to Write a Pumping Lemma Proof

Here's how to write a formal proof that L_1 is not regular.

Towards a contradiction, suppose L_1 were regular.

By the pumping lemma for regular languages, there is a pumping length p such that the string $s = 0^p 1^p$ in L_1 would be pumpable --- i.e., parsable into xyz such that y is nonempty, $|xy| \le p$, and $xy^iz \in L_1$ for all $i \in Nat$.

s must be parsed as $x = 0^a$, $y = 0^b$, $z = 0^c1^p$, where a,b,c \in Nat, a + b + c = p, and b > 0.

But $xy^iz = 0^{a+bi+c}1^p = 0^{p+b(i-1)}1^p$, which $\notin L_1$ for any $i \ne 1$. So L_1 cannot be regular.

You should write pumping lemma proofs on PS7 in this format!

The Pumping Lemma 20-9

$L_2 = \{ w \mid w \text{ has equal } \# \text{ of 0s and 1s} \}$

- 1. You: give the demon the language L_2
- 2. Demon: gives you p
- 3. You: give the demon a string $s \in L_2$ with $|s| \ge p$. Which ones below work?

$$s_1 = 0^{p/2}1^{p/2}$$

 $s_2 = 0^p1^p$

 $s_3 = (01)^p$

- 4. Demon: divides s into xyz such that |y| > 0 and $|xy| \le p$
- 5. You: give the demon an i such that $xy^iz \notin L_2$

Moral: not all strings s work! (But just need one.)

The Pumping Lemma 20-10

L₂: A Simpler Approach using Closure Properties

Suppose L2 is regular.

Then $L_2 \cap 0^*1^*$ is regular. Why?

So L₂ can't be regular. Why?

Moral: Closure properties of regular languages are helpful for proving languages nonregular!

The Pumping Lemma 20-11

Intuition: Regular Languages "Can't Count"

Intuitively, the pumping lemma says that regular languages (equivalently, finite automata) can't count arbitrarily high – they'll get confused beyond k = the number of states.

This is why L_1 and L_2 aren't regular:

 $L_1 = \{0^n1^n \mid n \in Nat\}$

 $L_2 = \{ w \mid w \text{ has equal } \# \text{ of Os and 1s} \}$

But be careful! This intuition can sometimes lead you astray!

For example, the following languages are regular:

 $\{w \mid w \text{ in } \{0,1\}^* \text{ and has equal } \# \text{ of 01s and 10s} \}$ (PS4)

 $\{1^ky \mid y \text{ in } \{0,1\}^* \text{ and } y \text{ contains at least } k \text{ 1s, for } k \ge 1\}$ (PS7)

The Pumping Lemma 20-12

Pumping Down: $L_3 = \{0^i1^j \mid i > j\}$

- 1. You: give the demon the language L_3
- 2. Demon: gives you p
- 3. You: give the demon what string $s \in L_3$ with $|s| \ge p$?
- 4. Demon: divides s into xyz such that |y| > 0 and $|xy| \le p$

5. You: give the demon an i such that $xy^iz \notin L_3$

Moral: Sometimes i needs to be 0. This is called "pumping down".

The Pumping Lemma 20-13

The Pumping Lemma 20-15

$L_4 = \{ww \mid w \in \{0,1\}^*\}$

- 1. You: give the demon the language L_4
- 2. Demon: gives you p
- 3. You: give the demon what string $s \in L_4$ with $|s| \ge p$?
- 4. Demon: divides s into xyz such that |y| > 0 and $|xy| \le p$
- 5. You: give the demon an i such that $xy^iz \notin L_4$.

Moral: Again, choosing s carefully can save you lots of work!

The Pumping Lemma 20-14

$L_5 = \{1^{n^2} \mid n \ge 0\}$

- 1. You: give the demon the language L_5
- 2. Demon: gives you p
- 3. You: give the demon what string $s \in L_5$ with $|s| \ge p$?
- 4. Demon: divides s into xyz such that |y| > 0 and $|xy| \le p$
- 5. You: give the demon an i such that $xy^iz \notin L_5$.

Moral: Arithmetic details matter!

Pumpable Languages

Pumpability

A language L is **pumpable** iff there is a number p (the pumping length) such that any string $s \in L$ with length $\geq p$ can be expressed as xyz, where:

- 1. |y| > 0
- 2. $|xy| \leq p$
- 3. $xy'z \in L$ for each $i \in Nat$.

The pumping lemma says:

L is regular \Rightarrow L is pumpable

Careful: the converse is **not** true!

L is pumpable \neq L is regular (Sipser 1.54, PS7 Prob3)

The Pumping Lemma 20-16