

Clustering Applications

- Feature quantization: group together many features into a few clusters
- Exploratory (data) science
- First pass before manually annotating data with labels

Distance Measure in Higher Dimensions

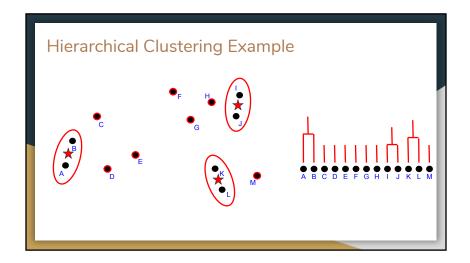
distance(Point a, Point b) =
$$\sqrt{2} \sum_{i=1}^{d} (a_i - b_i)^2$$

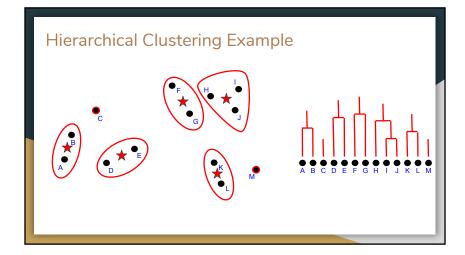
Clustering Algorithms

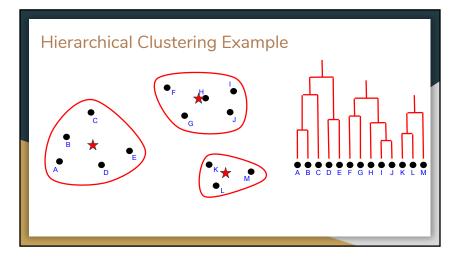
- Hierarchical (agglomerative) clustering
- *k*-means
- Gaussian mixture models

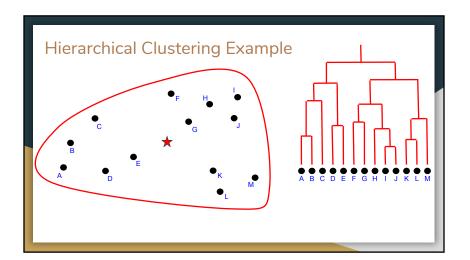
Hierarchical Clustering Algorithm

- Assign each point to its own cluster
- Repeat until the desired number of clusters is reached:
 - Merge together the two closest clusters

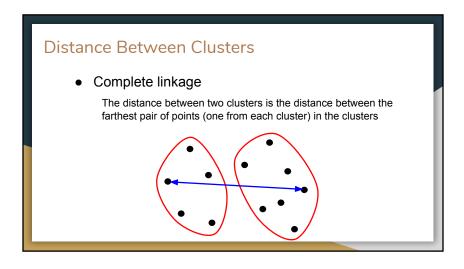


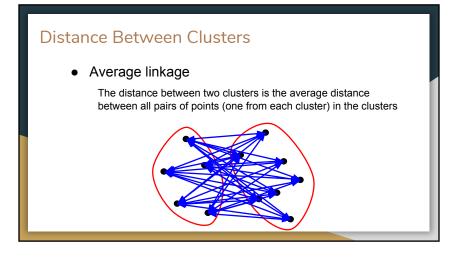






Distance Between Clusters • Single linkage The distance between two clusters is the distance between the closest pair of points (one from each cluster) in the clusters

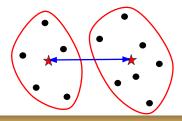




Distance Between Clusters

Centroid linkage

The distance between two clusters is the distance between the centroids of each cluster

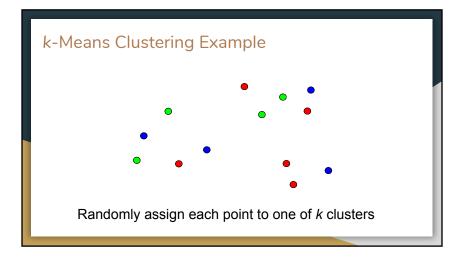


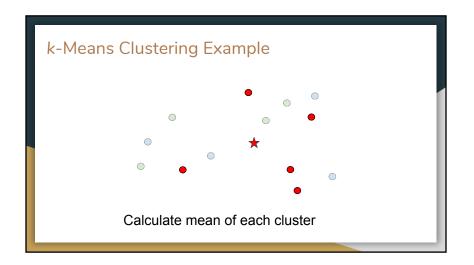
Clustering Algorithms

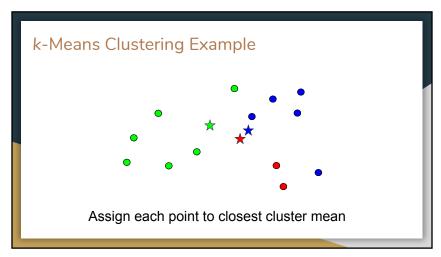
- Hierarchical (agglomerative) clustering
- k-means
- Gaussian mixture models

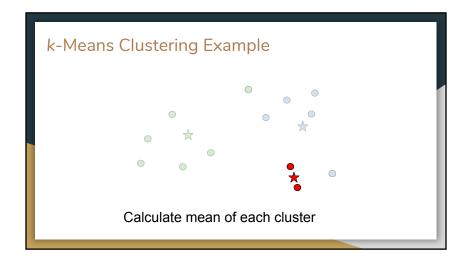
k-Means Clustering Algorithm

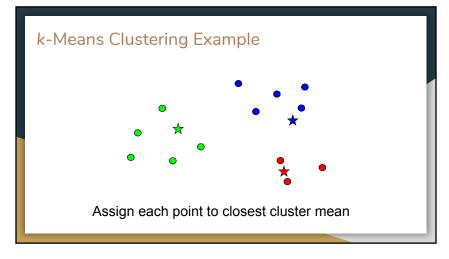
- Randomly assign each point to one of *k* clusters
- Repeat until convergence:
 - ➤ Calculate *mean* of each of the *k* clusters
 - > Assign each point to the cluster with the closest *mean*

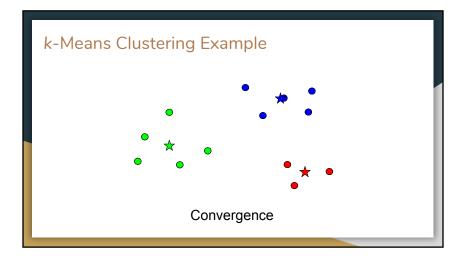












Clustering Problem

• For a given number of clusters, k, we measure a clustering's quality as the sum of the distances between each point and the mean of the point's cluster

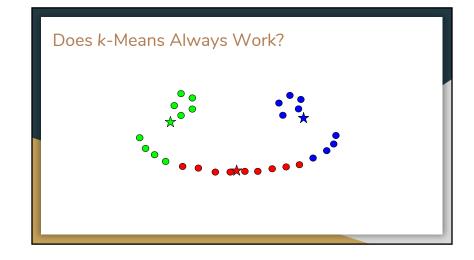
$$\sum_{i=1}^k \sum_{\mathbf{x} \in i^{\text{th}} \text{cluster}} (\mathbf{x} - \mu_i)^2$$

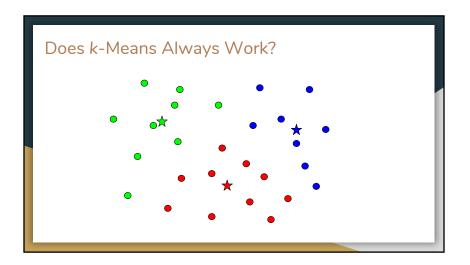
- Clustering Problem: Partition n data points into k clusters such that the total distance from each point to its cluster mean is minimized
- Clustering is an NP-complete problem

k-Means Heuristic

- Find a set of *k* means $\mu_1, \mu_2, ..., \mu_k$ such that:
- k-means (Lloyd's) algorithm is one way to minimize this objective function
- Walks "downhill" of this function with each iteration
- Objective function is not convex: has local minima
- Algorithm finds local minimum Thus, repeat algorithm with depending on starting point

different random starting points!





Clustering Algorithms

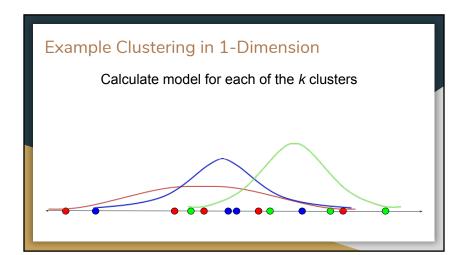
- Hierarchical (agglomerative) clustering
- *k*-means
- Gaussian mixture models

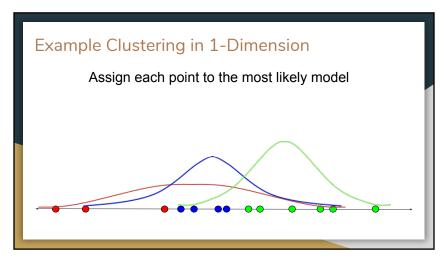
Model-Based Clustering

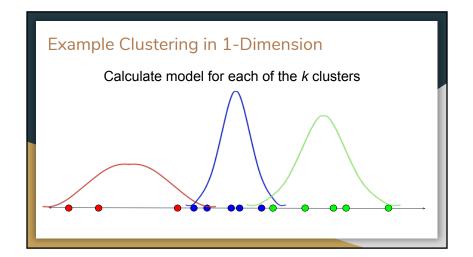
- Randomly assign each point to one of *k* clusters
- Repeat until convergence:
 - > Calculate *model* of each of the *k* clusters
 - > Assign each point to the cluster with the closest *model*

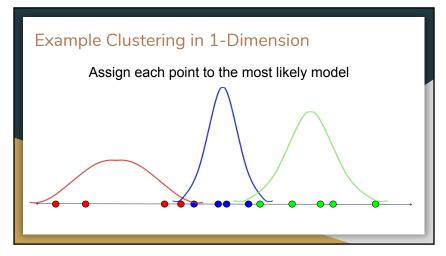
Example Clustering in 1-Dimension

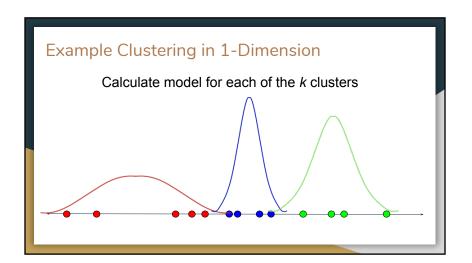
Randomly assign each point to one of *k* clusters

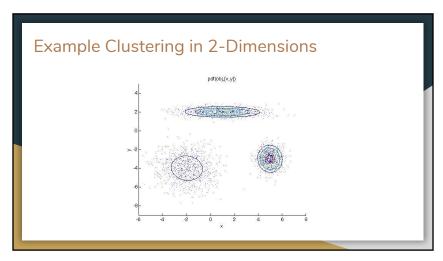


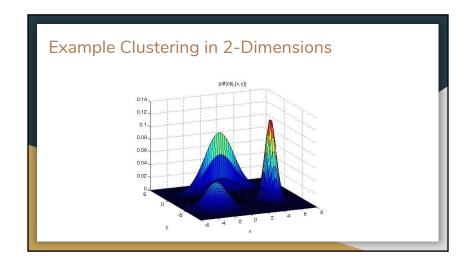


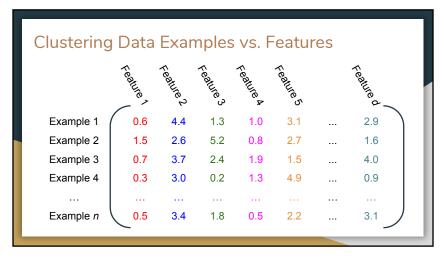












Assessing Clustering

- Evaluate against ground truth labels
 - > Trouble is, we normally don't have ground truth labels. If we did, we could have used *supervised* classification.

$$FMI = \frac{TP}{\sqrt{(TP + FP)(TP + FN)}}$$

- If we are clustering features, has it helped our classification task?
- High intra-class similarity, low inter-class similarity
- Human evaluation