
k Nearest Neighbors 
and Feature Scaling

Nearest Neighbors Algorithm

● Store all the training data as feature vectors

● Prediction for new, test data point: return the label of the closest 
training point

(you are the company you keep…)

What is the predicted color for a 
new point (-2, -2)? Or for (2, 2)?

k Nearest Neighbors Algorithm

● Choose some integer value of k (say, 3)

● Compute the k closest training points to the test data point

● Return the majority label

What is the predicted color for a 
new point (-1.1, 1.7)?

Effect of increasing k:
smoother decision boundaries



Three Classes Choosing k

● k is a free “hyperparameter” of the algorithm. How do we choose it?

● One option: try different values of k when evaluating on test data● One option: try different values of k when evaluating on test data

● Rather than split data into two parts, training and test, we split data 
into three parts, training and validation and test.
○ Use the validation data as “pseudo-test data” to tune (choose 

best) k
○ Do final evaluation on the test data only once
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Distance Measure in 2D - L2 Norm
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Distance Measure in 2D - L∞ Norm

Point 1        3.8     5.4

Point 2        2.6     2.6

Point 3        3.1     1.5

Point 4        2.1     0.5

Point 1

Point 2

Point 3

Point 4

distance(Point a, Point b) =       |a1 - b1|
∞ + |a2 - b2|

∞

                                         = max { |a1 - b1| , |a2 - b2| }

∞

Distance Measure in 2D

Point 1        3.8     5.4

Point 2        2.6     2.6

Point 3        3.1     1.5

Point 4        2.1     0.5

Point 1

Point 2

Point 3

Point 4

Point 2

Distance Measure in 3D
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Distance Measure in High Dimensions
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kNN Complexity

● Given n training examples and d features

● Training step
○ Time: approximately zero; just store the data points
○ Space: size of training data (n x d)

● Testing step (for each test example)
○ Time?

Feature Scaling
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Feature Scaling
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Feature Scaling

● Compute the mean (i.e., average) for each 
of the features in the training data and 
subtract this mean from each feature value

For each of the 1 ≤ i ≤ n training examples and 1 ≤ j ≤ d features, 
we subtract the mean:

where the mean of the j th feature is 

● Data will then be centered around zero
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Feature Scaling

● Compute the standard deviation for each 
of the features in the training data and 
divide each feature value by this standard 
deviation

For each of the 1 ≤ i ≤ n training examples and 1 ≤ j ≤ d features, 
we divide by the standard deviation:

where the standard deviation of the j th feature is 

● Data will then have comparable scale
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Feature Scaling - Test Data

● When scaling the training data, we store the mean and standard 
deviation values that we compute for each feature as part of the scaling 
process

For the i th testing example, we scale each of its 1 ≤ j ≤ d features by 
subtracting the j th mean (μj) and dividing by the j th standard deviation (σj):

● When given a testing example, we need to make sure that it is on a 
comparable scale as the training data. Thus, we scale it using the 
stored mean and standard deviation values.

Pros and Cons of kNN
Pros

● Simple and intuitive
● Can be used with multiple classes (not just 2)
● Data do not have to be linearly separable

Cons

● Need to store large full training data
● Test time is SLOOOWW

○ Prefer to pay for expensive training in exchange for fast 
prediction



Looking ahead

● kNN is an instance-based classifier: must carry around 
training data (waste of space)

● Training easy
● Testing hard

Future methods will be

● Parametric classifiers: compute a small “model” and then 
throw away training data

● Training hard
● Testing easy

Looking ahead: linear classifiers

● Training: find a dividing “hyperplane” between two classes
● Testing: check which side of hyperplane the new point falls in
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