

Nearest Neighbors Algorithm

- Store all the training data as feature vectors
- Prediction for new, test data point: return the label of the closest training point
(you are the company you keep...)

What is the predicted color for a new point $(-2,-2)$? Or for $(2,2)$?

k Nearest Neighbors Algorithm

Effect of increasing k : smoother decision boundaries

- Choose some integer value of k (say, 3)
- Compute the k closest training points to the test data point
- Return the majority label

What is the predicted color for a new point (-1.1, 1.7)?

Three Classes

Choosing k

- k is a free "hyperparameter" of the algorithm. How do we choose it?
- One option: try different values of k when evaluating on-test-data
- Rather than split data into two parts, training and test, we split data into three parts, training and validation and test.
- Use the validation data as "pseudo-test data" to tune (choose best) k
- Do final evaluation on the test data only once

Distance Measure in 2D
Point 1
Point 2
Point 3
Point 4 $\quad\left[\begin{array}{ll}3.8 & 5.4 \\ 2.6 & 2.6 \\ 3.1 & 1.5 \\ 2.1 & 0.5\end{array}\right]$

Distance Measure in 2D
Point 1
Point 2
Point 3
Point 4 $\quad\left[\begin{array}{ll}3.8 & 5.4 \\ 2.6 & 2.6 \\ 3.1 & 1.5 \\ 2.1 & 0.5\end{array}\right]$

distance(Point 1, Point 2) $=\sqrt[2]{|3.8-2.6|^{2}+|5.4-2.6|^{2}}$

Distance Measure in 2D - L^{2} Norm

distance(Point a, Point $b)=\sqrt[2]{\left|a_{1}-b_{1}\right|^{2}+\left|a_{2}-b_{2}\right|^{2}}$
Distance Measure in 2D
Point 1
Point 2
Point 3
Point 4 $\quad\left[\begin{array}{rr}3.8 & 5.4 \\ 2.6 & 2.6 \\ 3.1 & 1.5 \\ 2.1 & 0.5\end{array}\right]$

distance $\left(\right.$ Point 1, Point 2) $=\sqrt[1]{|3.8-2.6|^{1}+|5.4-2.6|^{1}}$

Distance Measure in 2D - L^{1} Norm

$$
\begin{aligned}
\text { distance }(\text { Point } a, \text { Point } b) & =\sqrt[1]{\left|a_{1}-b_{1}\right|^{1}+\left|a_{2}-b_{2}\right|^{1}} \\
& =\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right|
\end{aligned}
$$

Distance Measure in 2D

distance $\left(\right.$ Point 1, Point 2) $=\sqrt[\infty]{|3.8-2.6|^{\infty}+|5.4-2.6|^{\infty}}$

Distance Measure in 2D - L^{∞} Norm

distance $($ Point a, Point $b)=\sqrt[\infty]{\left|a_{1}-b_{1}\right|^{\infty}+\left|a_{2}-b_{2}\right|^{\infty}}$
$=\max \left\{\left|a_{1}-b_{1}\right|,\left|a_{2}-b_{2}\right|\right\}$
Distance Measure in 2D

Distance Measure in 3D

Distance Measure in 3D
Point 1
Point 2
Point 3
Point 4 $\left[\begin{array}{lll}3.8 & 5.4 & 4.7 \\ 2.6 & 2.6 & 2.6 \\ 3.1 & 1.5 & 2.2 \\ 2.1 & 0.5 & 1.2\end{array}\right]$

distance(Point 1, Point 2) $=\sqrt[2]{|3.8-2.6|^{2}+|5.4-2.6|^{2}+|4.7-2.6|^{2}}$

Distance Measure in 3D

Distance Measure in High Dimensions
Point 1
Point 2
Point 3
Point 4 $\left[\begin{array}{lll}3.8 & 5.4 & 4.7 \\ 2.6 & 2.6 & 2.6 \\ 3.1 & 1.5 & 2.2 \\ 2.1 & 0.5 & 1.2\end{array}\right]$

distance(Point a, Point $b)=\sqrt[2]{\left|a_{1}-b_{1}\right|^{2}+\left|a_{2}-b_{2}\right|^{2}+\left|a_{3}-b_{3}\right|^{2}}$

$$
\begin{aligned}
& \text { Point 1 } \begin{array}{l}
\text { Point } 2 \\
\text { Point } 3 \\
\text { Point 4 }
\end{array}\left[\begin{array}{llllll}
3.8 & 5.4 & 4.7 & 5.0 & \ldots & 4.2 \\
2.6 & 2.6 & 2.6 & 2.6 & \ldots & 2.6 \\
3.1 & 1.5 & 2.2 & 1.9 & \ldots & 2.7 \\
2.1 & 0.5 & 1.2 & 0.9 & \ldots & 1.7
\end{array}\right] \\
& \text { distance(Point } a \text {, Point } b)=\sqrt[2]{\sum_{i=1}^{d}\left|a_{i}-b_{i}\right|^{2}}
\end{aligned}
$$

kNN Complexity

Feature Scaling

- Compute the mean (i.e., average) for each of the features in the training data and subtract this mean from each feature value

For each of the $1 \leq i \leq n$ training examples and $1 \leq j \leq d$ features,

Feature Scaling

- Compute the mean (i.e., average) for each of the features in the training data and subtract this mean from each feature value we subtract the mean: $x_{i, j}=x_{i, j}-\mu_{j}$

For each of the $1 \leq i \leq n$ training examples and $1 \leq j \leq d$ features, we subtract the mean: $x_{i, j}=x_{i, j}-\mu_{j}$
where the mean of the $j^{\text {th }}$ feature is $\mu_{j}=\frac{1}{n} \sum_{1 \leq i \leq n} x_{i, j}$

- Data will then be centered around zero
where the mean of the $j^{\text {th }}$ feature is $\mu_{j}=\frac{1}{n} \sum_{1 \leq i \leq n} x_{i, j}$
- Data will then be centered around zero

Feature Scaling

- Compute the standard deviation for each of the features in the training data and divide each feature value by this standard deviation

For each of the $1 \leq i \leq n$ training examples and $1 \leq j \leq d$ features, we divide by the standard deviation: $x_{i, j}=x_{i, j} / \sigma_{j}$ where the standard deviation of the $j^{\text {th }}$ feature is $\sigma_{j}=\sqrt{\frac{1}{n} \sum_{1 \leq i \leq n}\left(x_{i, j}-\mu_{j}\right)^{2}}$

- Data will then have comparable scale

Feature Scaling - Test Data

Pros and Cons of kNN

Pros

When scaling the training data, we store the mean and standard deviation values that we compute for each feature as part of the scaling process

- Simple and intuitive
- Can be used with multiple classes (not just 2)
- Data do not have to be linearly separable

Cons

- Need to store large full training data

For the $i^{\text {th }}$ testing example, we scale each of its $1 \leq j \leq d$ features by subtracting the $j^{\text {th }}$ mean $\left(\mu_{j}\right)$ and dividing by the $j^{\text {th }}$ standard deviation $\left(\sigma_{j}\right)$:

$$
x_{i, j}=\left(x_{i, j}-\mu_{j}\right) / \sigma_{j}
$$

- Prefer to pay for expensive training in exchange for fast prediction

Looking ahead

Looking ahead: linear classifiers

- Training: find a dividing "hyperplane" between two classes
- $k N N$ is an instance-based classifier: must carry around training data (waste of space)
- Testing: check which side of hyperplane the new point falls in
- Training easy
- Testing hard

Future methods will be

- Parametric classifiers: compute a small "model" and then throw away training data
- Training hard
- Testing easy

