
Perceptrons

Basic Linear Classifiers

● Assumes 2 classes of labels (binary classification)
○ Will work to recognize if diabetes or not
○ Will not work to recognize 10 handwritten digits
○ Looking ahead: will see how to “spoof” multi-class classifiers from

binary classifiers

● Assumes a linear decision boundary
○ Looking ahead: will see how to manipulate linear classifiers to get

arbitrary decision boundaries

Linear Classifiers

● Training: find a dividing “hyperplane”
between two classes

There are several algorithms to learn linear classifiers

● Testing: check which side of
hyperplane the new point falls

Hyperplane

A hyperplane in ℝ2 is a line A hyperplane in ℝ3 is a 2D plane A hyperplane in ℝ1 is a point

A hyperplane in ℝn is an n-1 dimensional subspace

What is a hyperplane?

● Parameterized by a “weight” vector w orthogonal
to the hyperplane, centered at origin

● What is the dimensionality of w
in an n-dimensional space?

● What range is
○ The dot product of w with any of the blue points?
○ The dot product of w with any of the red points?

w

.

.

.

Perceptron Motivation

x1

x2

xd

w1

w2

wd

input

= w ∙ x

activation
function

weighted
sum

∑

Perceptron Learning Algorithm

Each w update
rotates the
hyperplane

Two classes: one is +1 and the other is -1
Training data comes as vectors x and labels y

Start with vector w = all zeros

1. For each training datapoint x with label y:

● If w∙x > 0 and y = +1, do nothing
● If w∙x < 0 and y = -1, do nothing
● If w∙x ≤ 0 and y = +1, w = w + x
● If w∙x ≥ 0 and y = -1, w = w - x

2. Repeat step 1 until no more misclassified datapoints, or until num_epochs
 (where the number of epochs is a hyperparameter)

Perceptron Algorithm In Action

w

1
2

3

4Two classes: one is +1 and the other is -1
Training data comes as vectors x and labels y

Start with vector w = all zeros

1. For each training datapoint x with label y:

● If w∙x > 0 and y = +1, do nothing
● If w∙x < 0 and y = -1, do nothing
● If w∙x ≤ 0 and y = +1, w = w + x
● If w∙x ≥ 0 and y = -1, w = w - x

2. Repeat step 1 until no more misclassified datapoints, or until num_epochs
 (where the number of epochs is a hyperparameter)

Perceptron Algorithm In Action

w

1
2

3

4Two classes: one is +1 and the other is -1
Training data comes as vectors x and labels y

Start with vector w = all zeros

1. For each training datapoint x with label y:

● If w∙x > 0 and y = +1, do nothing
● If w∙x < 0 and y = -1, do nothing
● If w∙x ≤ 0 and y = +1, w = w + x
● If w∙x ≥ 0 and y = -1, w = w - x

2. Repeat step 1 until no more misclassified datapoints, or until num_epochs
 (where the number of epochs is a hyperparameter)

Perceptron Algorithm In Action

w

1
2

3

4Two classes: one is +1 and the other is -1
Training data comes as vectors x and labels y

Start with vector w = all zeros

1. For each training datapoint x with label y:

● If w∙x > 0 and y = +1, do nothing
● If w∙x < 0 and y = -1, do nothing
● If w∙x ≤ 0 and y = +1, w = w + x
● If w∙x ≥ 0 and y = -1, w = w - x

2. Repeat step 1 until no more misclassified datapoints, or until num_epochs
 (where the number of epochs is a hyperparameter)

Perceptron Algorithm - Condensed Pseudocode

Start with vector w = all zeros

1. For each training datapoint x with label y:

● If w∙x > 0 and yi = +1, do nothing
● If w∙x < 0 and yi = -1, do nothing
● If y * (w∙x) > 0, do nothing

2. Repeat step 1 until no more misclassified datapoints, or until num_epochs
 (where the number of epochs is a hyperparameter)

● If w∙x ≤ 0 and y = +1, w = w + x
● If w∙x ≥ 0 and y = -1, w = w - x
● If y * (w∙x) ≤ 0, w = w + y x

Perceptron Algorithm In Action

https://docs.google.com/file/d/1DDuy2Tj69o9izal90XRHYfQDxFsyi-Yb/preview

What if the hyperplane is not centered at
the origin?

w

What if the hyperplane is not centered at
the origin?

w
w∙x + b = 0 represents a
hyperplane orthogonal to w,
translated by -b / ||w|| in the
direction of w

-b / ||w||

...

Perceptron Motivation

x1

xd

b

w1

wd

input, x

= w ∙ x + b

activation
function

weighted
sum

∑w2x2

Perceptron Learning Algorithm

Each w update
rotates the
hyperplane

Two classes: one is +1 and the other is -1
Training data comes as vectors x and labels y

Start with vector w = all zeros

1. For each training datapoint x with label y:

● If w∙x > 0 and y = +1, do nothing
● If w∙x < 0 and y = -1, do nothing
● If w∙x ≤ 0 and y = +1, w = w + x
● If w∙x ≥ 0 and y = -1, w = w - x

2. Repeat step 1 until no more misclassified datapoints, or until num_epochs
 (where the number of epochs is a hyperparameter)

Perceptron Learning Algorithm with bias term

Each w update
rotates the
hyperplane

Two classes: one is +1 and the other is -1
Training data comes as vectors x and labels y

Start with vector w = all zeros, and a bias term b = 0

1. For each training datapoint x with label y:

● If w∙x + b > 0 and y = +1, do nothing
● If w∙x + b < 0 and y = -1, do nothing
● If w∙x + b ≤ 0 and y = +1, w = w + x and b = b+1
● If w∙x + b ≥ 0 and y = -1, w = w - x and b = b-1

2. Repeat step 1 until no more misclassified datapoints, or until num_epochs
 (where the number of epochs is a hyperparameter)

Each b update
translates the
hyperplane

Perceptron Algorithm with bias term Condensed

Start with vector w = all zeros, and a bias term b = 0

1. For each training datapoint x with label y:

● If w∙x + b > 0 and y = +1, do nothing
● If w∙x + b < 0 and y = -1, do nothing
● If y * (w∙x + b) > 0, do nothing

2. Repeat step 1 until no more misclassified datapoints, or until num_epochs
 (where the number of epochs is a hyperparameter)

● If w∙x + b ≤ 0 and y = +1, w = w + x and b = b+1
● If w∙x + b ≥ 0 and y = -1, w = w - x and b = b-1
● If y * (w∙x + b) ≤ 0, w = w + y x and b = b+y

Perceptron Algorithm with bias term in Action What happens if we change the order of
the training data?

1

2 3

4

1

3 2

4

Order of data affects
training time!
To be safe, shuffle order
on each epoch.

https://docs.google.com/file/d/1r5JpeimkO88nUNAWT0dpVRF8Tck9cZ_C/preview

Perceptron Algorithm - no Linear Boundary Testing

● Once the perceptron has been trained and the parameters w
and b (i.e., the hyperplane) have been learned, we predict the
class of a new datapoint x by determining which side of the
hyperplane it falls on, i.e., by computing the weighted sum (i.e.,
dot product) followed by the activation function:

Recap

● Training

● Testing

Training data:
labeled points x, y

Perceptron
Learning
Algorithm

Hyperplane
parameters

w, b

Testing data: x
Learned

parameters: w, b
Dot product.

w∙x + b
Prediction:

+1 or -1

Complexity of Perceptron

● Training (as a function of n datapoints, d dimensions, and
number of epochs)

● Testing

https://docs.google.com/file/d/1aamaL1WQYOUscnGdZufWDo2uaX5k7cRQ/preview

What does the trained hyperplane give us?
● Most importantly: a classifier to predict labels for new datapoints

● Also indicates which features are most important for each label

- Given dataset of email messages, where each feature is a word and the value
is the number of times a message contains that word

- Train perceptron to classify SPAM messages vs non-SPAM (HAM) messages
- Resulting w shows which dimensions (aka features aka words) are most

indicative of SPAM and HAM

- Given dataset of movie/product/restaurant reviews, where each feature is
a word and the value is the number of times a review uses that word

- Train perceptron to classify sentiment (positive or negative)
- Resulting w shows which dimensions (aka features aka words) are most

indicative of positive or negative sentiment

SPAM Email

Sentiment
analysis

Danger of Simple Perceptron

● Last few points have
too much influence

● May result in a
hyperplane that’s “bad”
even if it separates the
training data

Solution 1: Voted Perceptron

● Training: Cache every hyperplane seen during training history,
i.e., store every w and b and the number of times it occurs

● Testing: Given a new point x, have every one of these cached
hyperplanes vote with the number of times it occurs

Problem:
(1) Need to store 1000s of hyperplanes after training
(2) Testing time goes up drastically

Solution 2: Averaged Perceptron

● Training: Rather than store every intermediate hyperplane seen
during training (too expensive), instead keep track of a running
sum of each hyperplane, i.e., a running sum of each w and b

● Testing: Given a new point x, use the average hyperplane
(based on u and 𝛃) to classify the point

Idea:
During training, compute the average hyperplane.
During testing, use this average hyperplane to classify a new point.

u = u + w
𝛃 = 𝛃 + b

● At the end of training, compute the parameters of the
average hyperplane:

u = u / (n*epochs)
𝛃 = 𝛃 / (n*epochs)

