

Basic Linear Classifiers

- Assumes 2 classes of labels (binary classification)
- Will work to recognize if diabetes or not
- Will not work to recognize 10 handwritten digits
- Looking ahead: will see how to "spoof" multi-class classifiers from binary classifiers
- Assumes a linear decision boundary
- Looking ahead: will see how to manipulate linear classifiers to get arbitrary decision boundaries

Linear Classifiers

- Training: find a dividing "hyperplane" between two classes
- Testing: check which side of hyperplane the new point falls

There are several algorithms to learn linear classifiers

What is a hyperplane?

- Parameterized by a "weight" vector w orthogonal to the hyperplane, centered at origin
- What is the dimensionality of \mathbf{w} in an n-dimensional space?
- What range is
- The dot product of \mathbf{w} with any of the blue points?
- The dot product of \mathbf{w} with any of the red points?

Perceptron Motivation

Perceptron Learning Algorithm

Two classes: one is +1 and the other is -1 Training data comes as vectors \boldsymbol{x} and labels \boldsymbol{y}

Start with vector $\mathbf{w}=$ all zeros

1. For each training datapoint \boldsymbol{x} with label \boldsymbol{y} :

- If $\mathbf{w} \cdot \boldsymbol{x}>0$ and $y=+1$, do nothing
- If $\mathbf{w} \cdot \boldsymbol{x}<0$ and $y=-1$, do nothing
- If $\mathbf{w} \cdot \boldsymbol{x} \leq 0$ and $y=+1, \mathbf{w}=\mathbf{w}+\boldsymbol{x}$
- If $\mathbf{w} \cdot \boldsymbol{x} \geq 0$ and $y=-1, \mathbf{w}=\mathbf{w}-\boldsymbol{x}$

2. Repeat step 1 until no more misclassified datapoints, or until num_epochs (where the number of epochs is a hyperparameter)

Perceptron Algorithm In Action

Two classes: one is +1 and the other is -1 Training data comes as vectors \boldsymbol{x} and labels \boldsymbol{y}

Start with vector $\mathbf{w}=$ all zeros

1. For each training datapoint \boldsymbol{x} with label y :

- If $\mathbf{w} \cdot \boldsymbol{x}>0$ and $y=+1$, do nothing
- If $\mathbf{w} \cdot \boldsymbol{x}<0$ and $y=-1$, do nothing
- If $\mathbf{w} \cdot \boldsymbol{x} \leq 0$ and $y=+1, \mathbf{w}=\mathbf{w}+\boldsymbol{x}$
- If $\mathbf{w} \cdot \boldsymbol{x} \geq 0$ and $y=-1, \mathbf{w}=\mathbf{w}-\boldsymbol{x}$

2. Repeat step 1 until no more misclassified datapoints, or until num_epochs (where the number of epochs is a hyperparameter)

Perceptron Algorithm In Action

Two classes: one is +1 and the other is -1 Training data comes as vectors \boldsymbol{x} and labels \boldsymbol{y}

Start with vector $\mathbf{w}=$ all zeros

1. For each training datapoint \boldsymbol{x} with label y :

- If $\mathbf{w} \cdot \boldsymbol{x}>0$ and $y=+1$, do nothing
- If $\mathbf{w} \cdot \boldsymbol{x}<0$ and $y=-1$, do nothing
- If $\mathbf{w} \cdot \boldsymbol{x} \leq 0$ and $y=+1, \mathbf{w}=\mathbf{w}+\boldsymbol{x}$
- If $\mathbf{w} \cdot \boldsymbol{x} \geq 0$ and $y=-1, \mathbf{w}=\mathbf{w}-\boldsymbol{x}$

Perceptron Algorithm In Action

Two classes: one is +1 and the other is -1 Training data comes as vectors \boldsymbol{x} and labels \boldsymbol{y}

Start with vector $\mathbf{w}=$ all zeros

1. For each training datapoint \boldsymbol{x} with label \boldsymbol{y} :

- If $\mathbf{w} \cdot \boldsymbol{x}>0$ and $y=+1$, do nothing
- If $\mathbf{w} \cdot \boldsymbol{x}<0$ and $y=-1$, do nothing
- If $\mathbf{w} \cdot \mathbf{x} \leq 0$ and $y=+1, \mathbf{w}=\mathbf{w}+\boldsymbol{x}$
- If $\mathbf{w} \cdot \boldsymbol{x} \geq 0$ and $y=-1, \mathbf{w}=\mathbf{w}-\boldsymbol{x}$

2. Repeat step 1 until no more misclassified datapoints, or until num_epochs (where the number of epochs is a hyperparameter)

Perceptron Algorithm - Condensed Pseudocode
Perceptron Algorithm In Action

Start with vector $\mathbf{w}=$ all zeros

1. For each training datapoint \boldsymbol{x} with label \boldsymbol{y} :

- If $w \cdot x>0$ and $y_{i}=+1$, do nothing
- If $\mathbf{w} \cdot \boldsymbol{x}<0$ and $y_{i}=-1$, do nothing
- If $y^{*}(\mathbf{w} \cdot \boldsymbol{x})>0$, do nothing
- If $\mathbf{w} \cdot \boldsymbol{x} \leq 0$ and $y=+1, \mathbf{w}=\mathbf{w}+\boldsymbol{x}$
- If $\mathbf{w} \cdot \boldsymbol{x} \geq 0$ and $y=-1, \mathbf{w}=\mathbf{w}-\boldsymbol{x}$
- If $y^{*}(\mathbf{w} \cdot \boldsymbol{x}) \leq 0, \mathbf{w}=\mathbf{w}+y \boldsymbol{x}$

2. Repeat step 1 until no more misclassified datapoints, or until num_epochs (where the number of epochs is a hyperparameter)

What if the hyperplane is not centered at the origin?

What if the hyperplane is not centered at the origin?
$\mathbf{w} \cdot \mathbf{x}+b=0$ represents a hyperplane orthogonal to \mathbf{w}, translated by $-b /\|w\|$ in the direction of \mathbf{w}

Perceptron Learning Algorithm

Two classes: one is +1 and the other is -1
Training data comes as vectors \boldsymbol{x} and labels \boldsymbol{y}

Start with vector $\mathbf{w}=$ all zeros

1. For each training datapoint \boldsymbol{x} with label y :

Each w update rotates the hyperplane

- If $\mathbf{w} \cdot \boldsymbol{x}>0$ and $y=+1$, do nothing
- If $\mathbf{w} \cdot \boldsymbol{x}<0$ and $y=-1$, do nothing
- If $\mathbf{w} \cdot \boldsymbol{x} \leq 0$ and $y=+1, \mathbf{w}=\mathbf{w}+\boldsymbol{x}$
- If $\mathbf{w} \cdot \boldsymbol{x} \geq 0$ and $y=-1, \mathbf{w}=\mathbf{w}-\boldsymbol{x}$

2. Repeat step 1 until no more misclassified datapoints, or until num_epochs (where the number of epochs is a hyperparameter)

Perceptron Learning Algorithm with bias term

Perceptron Algorithm with bias term Condensed

Two classes: one is +1 and the other is -
Training data comes as vectors \boldsymbol{x} and labels \boldsymbol{y}

Start with vector $\mathbf{w}=$ all zeros, and a bias term $b=0$

1. For each training datapoint \boldsymbol{x} with label y :

- If $\mathbf{w} \cdot \boldsymbol{x}+b>0$ and $y=+1$, do nothing
- If $\mathbf{w} \cdot \mathbf{x}+b<0$ and $y=-1$, do nothing
- If $\mathbf{w} \cdot \boldsymbol{x}+b \leq 0$ and $y=+1, \mathbf{w}=\mathbf{w}+\boldsymbol{x}$ and $\mathrm{b}=\mathrm{b}+1$
- If $\mathbf{w} \cdot \boldsymbol{x}+b \geq 0$ and $y=-1, \mathbf{w}=\mathbf{w}-\boldsymbol{x}$ and $\mathrm{b}=\mathrm{b}-1$

Start with vector $\mathbf{w}=$ all zeros, and a bias term $b=0$

1. For each training datapoint \boldsymbol{x} with label \boldsymbol{y} :

- If $\mathbf{w} \cdot \boldsymbol{x}+b>0$ and $y=+1$, do nothing
- If $\mathbf{w} \cdot \boldsymbol{x}+b<0$ and $y=-1$, do nothing
- If $y^{*}(\mathbf{w} \cdot \boldsymbol{x}+b)>0$, do nothing
- If $\mathbf{w} \cdot \boldsymbol{x}+\mathrm{b} \leq 0$ and $y=+1, \mathbf{w}=\mathbf{w}+\boldsymbol{x}$ and $\mathrm{b}=\mathrm{b}+1$
- If $\mathbf{w} \cdot \boldsymbol{x}+\mathrm{b} \geq 0$ and $y=-1, \mathbf{w}=\mathbf{w}-\boldsymbol{x}$ and $\mathrm{b}=\mathrm{b}-1$
- If $y^{*}(\mathbf{w} \cdot \boldsymbol{x}+b) \leq 0, \mathbf{w}=\mathbf{w}+y \boldsymbol{x}$ and $\mathrm{b}=\mathrm{b}+y$

2. Repeat step 1 until no more misclassified datapoints, or until num_epochs (where the number of epochs is a hyperparameter)

Perceptron Algorithm with bias term in Action

Perceptron Algorithm - no Linear Boundary

Testing

- Once the perceptron has been trained and the parameters \mathbf{w} and b (i.e., the hyperplane) have been learned, we predict the class of a new datapoint \mathbf{x} by determining which side of the hyperplane it falls on, i.e., by computing the weighted sum (i.e. dot product) followed by the activation function:
predicted class $=\left\{\begin{array}{cc}1 & \text { if } \\ -1 & \mathbf{w} \cdot \mathbf{x}+b>0 \\ \text { otherwise }\end{array}\right.$

Recap

Complexity of Perceptron

- Training (as a function of n datapoints, d dimensions, and number of epochs)
- Testing

What does the trained hyperplane give us?

- Most importantly: a classifier to predict labels for new datapoints
- Also indicates which features are most important for each label

SPAM Email
Given dataset of email messages, where each feature is a word and the value is the number of times a message contains that word
Train perceptron to classify SPAM messages vs non-SPAM (HAM) messages Resulting w shows which dimensions (aka features aka words) are most indicative of SPAM and HAM

Sentiment

analysis
Given dataset of movie/product/restaurant reviews, where each feature is a word and the value is the number of times a review uses that word Train perceptron to classify sentiment (positive or negative)

- Resulting w shows which dimensions (aka features aka words) are most indicative of positive or negative sentiment
- Last few points have too much influence

Danger of Simple Perceptron

May result in a hyperplane that's "bad" even if it separates the training data

Solution 2: Averaged Perceptron

During training, compute the average hyperplane. During testing, use this average hyperplane to classify a new point.

- Training: Rather than store every intermediate hyperplane seen during training (too expensive), instead keep track of a running sum of each hyperplane, i.e., a running sum of each \mathbf{w} and b

$\mathbf{u}=\mathbf{u}+\mathbf{w}$

 $\boldsymbol{\beta}=\boldsymbol{\beta}+b$Testing: Given a new point \boldsymbol{x}, have every one of these cached hyperplanes vote with the number of times it occurs
(1) Need to store 1000 s of hyperplanes after training (2) Testing time goes up drastically

- At the end of training, compute the parameters of the average hyperplane:
$\mathbf{u}=\mathbf{u} /\left(n^{*}\right.$ epochs $)$ $\boldsymbol{\beta}=\boldsymbol{\beta} /\left(n^{\star}\right.$ epochs)
- Testing: Given a new point \boldsymbol{x}, use the average hyperplane (based on \mathbf{u} and $\boldsymbol{\beta}$) to classify the point

