
Logistic Regression

Classification vs. Regression
● In classification problems, we use ML algorithms

(e.g., kNN, decision trees, perceptrons) to predict
discrete-valued (categorical with no numerical
relationship) outputs

● In regression problems, we use ML
algorithms (e.g., linear regression) to
predict real-valued outputs

● Given email, predict ham or
spam

● Given medical info, predict
diabetes or not

● Given tweets, predict positive or
negative sentiment

● Given Titanic passenger info,
predict survival or not

● Given images of handwritten
numbers, predict intended digit

● Given student info, predict exam
scores

● Given physical attributes, predict
age

● Given medical info, predict
blood pressure

● Given real estate ad, predict
housing price

● Given review text, predict
numerical rating

Classification vs. Regression
● In classification problems, we use ML algorithms

(e.g., kNN, decision trees, perceptrons) to predict
discrete-valued (categorical with no numerical
relationship) outputs

● In regression problems, we use ML
algorithms (e.g., linear regression) to
predict real-valued outputs

Logistic Regression

● Logistic regression is used for classification, not regression!

● Logistic regression has some commonalities with linear regression, but
you should think of it as classification, not regression!

● In many ways, logistic regression is a more advanced version of the
perceptron classifier.

Perceptron Limitations

● Perceptron training algorithm finds
an arbitrary hyperplane that
separates the two classes, not an
“optimal” one

● Perceptron predictions have
no probabilistic interpretation
or confidence estimates

● Perceptron learning algorithm has
no principled way of preventing
overfitting. Workarounds (e.g.,
averaged perceptron) are heuristics

Should I wear a jacket?

Should I wear a jacket? (softer) Hard Threshold vs. Sigmoid (Logistic) Function

Returns either 0 or 1

Returns a number between
0.0 and 1.0 that can be

interpreted as a probability

Perceptron Motivation

...

x1

xd

b

w1

wd

input, x

= w ∙ x + b

activation
function

weighted
sum

∑w2x2

Logistic Regression Motivation

...

x1

xd

b

w1

wd

input, x

= w ∙ x

sigmoid or logistic
function

weighted
sum

∑w2x2

x0=1
w0

Hypothesis

● h(x) is interpreted as the probability that y = 1 for input x

● For example, what is the probability that some email message x is
spam (1) as opposed to ham (0)?
○ For a particular set of parameters w, if h(x) is 0.25 we would

estimate the probability that the message is spam as 25% and
classify the message as ham (0)

○ For a particular set of parameters w, if h(x) is 0.75 we would
estimate the probability that the message is spam as 75% and
classify the message as spam (1)

Parameters w
Different values for the parameters w lead to different decision boundaries

We want to quantify the cost associated with a
given boundary (value settings for w) for our data

Then we can find the values of w that have the lowest cost

Cost

Suppose for a given setting of parameters w, we have 4 training data points that:

result in the following hypotheses have the following classifications

h(x(1)) = 0.001

h(x(2)) = 0.999

h(x(3)) = 0.001

h(x(4)) = 0.999

y(1) = 0

y(2) = 0

y(3) = 1

y(4) = 1

Cost

Gradient Descent

We want to find w that minimizes the cost J(w).

Repeat (in parallel for each component of w):

Batch gradient descent

Gradient Descent

We want to find w that minimizes the cost J(w).

Repeat (in parallel for each component of w), iterating over each data point (x, y):

Stochastic gradient descent

New Prediction

To make a new prediction, e.g., on a test data point x, use the
learned model parameters w to output:

Non-Linear Logistic Regression
Suppose we have data with two features and
we don’t think the data are linearly separable.

2
5
...
3

4
1
...
-2

1
0
...
1

yx2x1

Non-Linear Logistic Regression
Suppose we have data with two features and
we don’t think the data are linearly separable.

2
5
...
3

4
1
...
-2

4
25
...
9

16
1
...
4

1
0
...
1

yx2x1x2x1

We could add higher
order features

Our classifier might learn some w=(-1,0,0,1,1),
with corresponding decision boundary:

22

Overfitting
Suppose we have data with two features and
we don’t think the data are linearly separable.

We could add higher
order features

2
5
...
3

4
1
...
-2

1
0
...
1

yx2x1

Regularized Logistic Regression
● Smaller values for the parameters w1, w2, w3, …, wd lead to

simpler hypotheses that are less prone to overfitting.

● We modify our cost function so that it not only

(1) finds a good fitting hypothesis (penalizes error of hypothesis
on training data)

(2) considers the complexity of the hypothesis (penalizing more
complex hypotheses and favoring simpler hypotheses)

but also

is
regularization

parameter

Regularized Gradient Descent

Logistic Regression

Regularized Logistic Regression

Putting It All Together

● Perform feature scaling (in the case where there are multiple features and their range of values
is quite different in magnitude) on the training data

● Add a new feature x0 whose value is always 1, i.e., add a column of ones to the beginning
of the data matrix

● Randomly shuffle the data and split into training, validation, and testing

➢ Train the model, e.g., using regularized gradient descent to find the model parameters w
that minimize the cost of the model on the training data while favoring simpler models

● If the data are assumed to be non-linear, add higher order features

● Using different hyperparameter settings (e.g., for and):

➢ Evaluate the model’s performance on the (feature scaled) validation data

● Choose the best hyperparameters and gauge the model’s performance on new data based on
its performance on the (feature scaled) testing data

Multiclass Classification

Handwritten digits:

Song genres:

Email labeling:

Blues, Country, Hip Hop, Jazz, Pop, Rock

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Family, School, Summer, Friends, CS305

One vs. Rest (One vs. All) Overview ML Algorithms

Supervised
Learning

Unsupervised
Learning

Hierarchical
Clustering

Dimensionality
Reduction

Gaussian
Mixture Models

K-Means

Non-Parametric Parametric

kNN

Support Vector
Machines

Collaborative
Filtering

Regression
Models

Linear
Regression

Linear
Classifiers

Non-Linear
Classifiers

Decision Trees

Perceptron Neural
Networks

Logistic
Regression Hidden Markov

Models

