
Affine Transformations
Computer Graphics
Scott D. Anderson

1 Linear Combinations

To understand the power of an affine transformation, it’s helpful to understand the idea of a “linear combination.” If
we have two things, A and B, such that it makes sense both to multiply them by scalars and to add them together, a
linear combination of A and B is any expression like the following:

αA + βB

whereα andβ are any real numbers. In other words, a “linear combination”of A and B is the sum of a number
multiplied by A and a number multiplied by B. For example,

3A− 2B

is a linear combination of A and B.
We’ve seen this kind of expression before, when we looked at parametric equations of lines; any point on a line

between A and B is a linear combination of A and B. In that case,A and B were points, and the two weights add to 1:

αA + (1− α)B

2 Affine Transforms

The essential power of affine transformations is that we onlyneed to transform the endpoints of a segment, and every
point on the segment is transformed, because lines map to lines. Hence, the transformation must be linear. What
“linear” means in this context is the following:

f(αp + βq) = αf(p) + βf(q)

What this equation means is that the mappingf , applied to a linear combination ofp andq, is the same as the
linear combination off applied to thep andq. Thus,

In order to transform every point on a line segment, it’s sufficient to transform the endpoints. In particular,
to transform a line drawn from A to B, it’s sufficient to transform A and B and then draw the lines between
the transformed endpoints.

Fortunately, matrix multiplication has this property of being linear.

3 Matrix Multiplication

Matrix multiplication is a shorthand for equations with just adding and multiplying. The following is the product of a
matrix and a (column) vector.

[

ax + by

cx + dy

]

=

[

a b

c d

] [

x

y

]

This is useful when the second thing is a vector or point in ourmodel and the matrix accomplishes some transfor-
mation we want to do. So, it’s useful to separate the object from the transformation.

Matrix multiplication is done in an odd way. You go across therows of the matrix on the left and down the columns
of the matrix on the right, multiplying matching elements. Then add up the products of the matching elements. So,
multiplying a2× 3 by a3× 2 we get a2× 2:

1



[
∑

i a1ibi1

∑

i a1ibi2
∑

i a2ibi1

∑

i a2ibi2

]

=

[

a11 a12 a13

a21 a22 a23

]

×





b11 b12

b21 b22

b31 b32





Let’s do an example.

[

1 · 2 + 3 · 6 + 5 · 10 1 · 4 + 3 · 8 + 5 · 12
7 · 2 + 9 · 6 + 11 · 10 7 · 4 + 9 · 8 + 11 · 12

]

=

[

1 3 5
7 9 11

]

×





2 4
6 8
10 12





So, finishing the arithmetic, the matrix product is
[

70 88
178 232

]

4 Translation, Rotation and Scaling

In this section, we’ll look at how the three major affine transformations are accomplished using matrix multiplication.
We’ll start with the easiest one and work up.

4.1 3D Scaling

We can easily do scaling with a matrix multiplication.




sxx

syy

szz



 =





sx 0 0
0 sy 0
0 0 sz









x

y

z





This matrix results in thex coordinate being multiplied bysx, and so forth. Since all the matrix entries are zero
except for the three scale factors, all we have to tell OpenGLabout is the three non-zero entries.

The OpenGL equivalent of this is:

glScalef(sx,sy,sz);

It may seem silly to do a big matrix multiplication instead ofthree simple multiplications, but it’s really useful to
be able to do everything with matrix multiplications, as we’ll see by the end of this document.

5 2D Rotation

Rotation changes only the directions of the coordinate system (these are calledbasis vectors in linear algebra), but not
the origin. We’ll rotatevectors but the math is the same as “rotating” a point. You can think ofrotating a point as
rotating the vector from the origin to the point.

5.1 Rotating Basis Vectors

The basis vectors are (1,0,0), (0,1,0) and (0,0,1). Becausethey have such a simple form, it’s fairly easy to figure out
how to rotate them. Let’s look at rotating just one.

2



-����������1

6

B
B

B
B

B
B

B
B
B
BM

θ
v

v′

ww′

You may be able to figure out from your knowledge of trigonometry that the new vectors are:

v′ =

[

cos θ

sin θ

]

andw′ =

[

− sin θ

cos θ

]

We can express this computation usingmatrix multiplication:

v′ =

[

cos θ

sin θ

]

=

[

cos θ − sin θ

sin θ cos θ

] [

1
0

]

and

w′ =

[

− sin θ

cos θ

]

=

[

cos θ − sin θ

sin θ cos θ

] [

0
1

]

Thus, we can determine the rotated form of the basis vectors by multiplying them by this rotation matrix. Since
every vector can be defined by a linear combination (there’s that terminology again) of the basis vectors, and matrix
multiplication is linear, this rotation matrix will work for any vector. Let’s see one example.

5.2 Example of Rotating a Vector

Let’s start with the vectorv = (2, 3). You can think of this as an arrow from the origin to the point (2,3). In general,
we can think of any vector as adirection, like “north by northeast” is a direction. Here, our direction is “to the right
(positive x) and up (positive y), but more up than right.” In fact, it’s a lot like “north by northeast.”

What does it mean to rotate this vector? It’s like turning a ship: you’re now heading it a different direction. Let’s
turn this vector by 30 degrees to yieldv′:

v′ =

[

cos(30) − sin(30)
sin(30) cos(30)

] [

2
3

]

=

[

0.866 −0.5
0.5 0.866

] [

2
3

]

=

[

2 ∗ 0.866− 3 ∗ 0.5
2 ∗ 0.5 + 3 ∗ 0.866

]

=

[

0.232
3.6

]

Here is a picture. The green arrow is the original vectorv = (3, 2). The blue arrow is the result after rotating by
30 degrees.

3



5.3 Arbitrary Unit-Length Vectors

What about rotating an arbitrary unit-length vector? Suppose it’s at an angle ofα with thex axis. We want to rotate it
to an angle ofα + θ.

-�
�

�
�

�
�

�
�3

[

cos(α)
sin(α)

]



















�

[

cos(α + θ)
sin(α + θ)

]

θ

α

By some theorems of trigonometry having to do with sines and cosines of the sums of angles, we find:
[

cos(α + θ)
sin(α + θ)

]

=

[

cosα cos θ − sinα sin θ

sinα cos θ + cosα sin θ

]

But this is the same thing as the matrix multiplication.
[

cos(α + θ)
sin(α + θ)

]

=

[

cos θ − sin θ

sin θ cos θ

] [

cosα

sinα

]

Notice that this is the same rotation matrix we used in the last section. In fact, the general 2D rotation matrix is the
following. It can be used to rotate any vector or point.

[

cos θ − sin θ

sin θ cos θ

]

We can also think of this as a 3D rotation around thez axis, using the following3 × 3 matrix. This is, in fact, the
way that OpenGL does rotations around thez axis.





x′

y′

z′



 =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1









x

y

z





Generally, there is such a matrix for rotation around any vector, not just around thez axis. We’ll let OpenGL figure
out what the matrix is. The OpenGL equivalent of rotating byθ around thez axis is:

glRotatef(theta,0,0,1);

4



5.4 2D Translation

Translation can’t be done with matrix multiplication (without a trick), so it has to be done with addition.
[

x + ∆x

y + ∆y

]

=

[

∆x

∆y

]

+

[

x

y

]

But we really want to use multiplication, for reasons we’ll see in a moment, so we usehomogeneous coordinates.

5.5 Homogeneous Coordinates

Homogeneous coordinates adds an extra component, conventionally calledw, to each vector or point. You can try to
think of it as a spatial dimension, with the usual points and vectors being a subspace of it, but I find that difficult and
unhelpful. I think it’s easier to just think of it as a representational trick.

Using homogeneous coordinates, apoint hasw = 1, while avector hasw = 0. This lets us tell points and vectors
apart, which is pretty cool. Here’s an example. If we have pointsP = (7, 6, 5) andQ = (1, 2, 3), we can give the
homogeneous coordinates thus:

P = (7, 6, 5, 1)

Q = (1, 2, 3, 1)

v = P −Q = (6, 4, 2, 0)

But, how can you remember which hasw = 0 and which hasw = 1? I find it easier to recall that a vector,v, from
Q to P is defined as follows:

v = P −Q

Q = P + v

Whatever thew component of the pointsP andQ are, thew component of the vectorv has to be zero. Therefore,
thew component of any vector is zero and thew component of a point is 1.

How do homogeneous coordinates help us with translation? Ifwe want to translate something by(∆x, ∆y, ∆z),
we can use the following matrix:









x + ∆x

y + ∆y

z + ∆z

w









=









1 0 0 ∆x

0 1 0 ∆y

0 0 1 ∆z

0 0 0 1

















x

y

z

w









Take a minute to work out the matrix multiplication to see that this 4× 4 matrix is, in fact, a translation matrix in
homogeneous coordinates.

The OpenGL equivalent of this translation matrix is:

glTranslatef(deltax,deltay,deltaz);

6 Transformations in 4D

So we can do translation by multiplying by a4 × 4 matrix. How does this affect rotation and scaling? It turns out to
be pretty straightforward. Since we just want to keep thew component the same, we just expand our earlier matrices
with a row and column of zeros except for a 1 in the corner.

Thus, the4× 4 scaling matrix is just:








sxx

syy

szz

w









=









sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

















x

y

z

w









We can similarly expand the rotation matrix to4× 4 to leave thew component alone.

5



7 Concatenation of Matrices

In this section, we’ll finally learn why we’ve gone to such lengths to turn every affine transformation into a matrix
multiplication, instead of representing each transformation in a more direct way.

Suppose our program, such as the Fence program, has used a large number of transformations and then sends a
bunch of vertices down the pipeline. How is this computed?

One way to compute is to take a vertex and apply one matrix, then another, then another, and so forth. To compute
the transformed vertex,v′, from the original vertex,v, the computation looks something like:

v′ = S(R(T1(T2(T3(R2(T4(v)))))))

If you’re doing this on many vertices, there’s a better way. First, combine all the matrices into one. The computa-
tion above becomes:

v′ = (SRT1T2T3R2T4)v

In other words, the OpenGL pipeline representsall of the transformations in one4 × 4 matrix. A single matrix
can represent any sequence of any number of translations, rotation, scalings, in any order. This is atremendous
simplification. That’s why OpenGL (and every graphics system) uses homogeneous coordinates and represents every
transformation using a matrix.

The concatenation (product) of all transformation matrices are captured in a matrix called thecurrent transforma-
tion matrix (CTM). Thus, when you doglTranslatef orglRotatef orglScalef, what you’re really doing is
multiplying the CTM, like this:

CTM← CTM×M

whereM is the appropriate translation, rotation or scaling matrix, like one of the matrices we saw above. When you
doglPushMatrix andglPopMatrix, you’re saving and restoring the CTM.

There are even OpenGL calls for multiplying the current matrix by an arbitrary4× 4 matrix.

6


