
Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

A more powerful adversary
Security against chosen-plaintext attacks

Foundations of Cryptography
Computer Science Department

Wellesley College

Fall 2016

Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

Table of contents

Introduction

CPA-Secure

Pseudorandom function

Constructing CPA-Secure Schemes



Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

Security against chosen-plaintext attacks (CPA)

• Our adversaries have been
completely passive, merely
listening in our
conversations.

• Today we study a more
powerful type of adversarial
attack, called a
chosen-plaintext attack.

• Here the adversary is allowed
to ask for encryptions of
multiple messages* chosen
adaptively.

*Formally the adversary, denoted AEnck(·), has access to an encryption oracle,

viewed as a ”black-box” that encrypts messages of AEnck(·)’s choice using the

secret key k that is unknown to AEnck(·).

Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

Another experiment

The experiment is defined for any private-key encryption scheme
⇧ = (Gen,Enc,Dec), any adversary A, and any value n for the security
parameter: The CPA indistinguishability experiment PrivKcpa

A,⇧(n)

1. A key k is generated by running Gen(1n).

2. The adversary A is given 1n and oracle access to Enck(·), and
outputs a pair of messages m0,m1 2M of the same length.

3. A random bit b  {0, 1} is chosen. A challenge ciphertext

c  Enck(mb) is computed and given to A.

4. The adversary A continues to have oracle access to Enck(·), outputs
a bit b0.

5. The output of the experiment is defined to be 1 if b0 = b, and 0
otherwise. We write PrivKeav

A,⇧(n) = 1 if the output is 1 and in this
case we say that A succeeded.



Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

CPA-secure*

Definition 3.22. An private-key encryption scheme ⇧ = (Gen, Enc,
Dec) has indistinguishable encryption under a chosen-plaintext

attack if for all probabilistic polynomial-time adversaries A there
exists a negligible function negl such that

Pr[PrivKcpa
A,⇧(n) = 1]  1

2
+ negl(n),

where the probability is taken over the random coins used by A, as
well as the random coins used by the experiment (for choosing the
key, the random bit b, and any random coins used in the
encryption process).

*Notice that this scheme encompasses known plaintext attacks. Certainly any

scheme that has indistinguishable encryptions under a chosen-plaintext attack

also has indistinguishable encryption in the presence of an eavesdropper. Why?

Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

Well, that’s just plain impossible*

• Consider an adversary A that
outputs (m0,m1) and then receives
the challenge ciphertext
c  Enck(mb).

• Since A has access to Enck(·), it
can obtain c0  Enck(m0) and
c1  Enck(m1)

• The adversary now does a simple
comparison: If c = c0 then it must
be that b = 0; if c = c1, then
b = 1.

*What’s wrong with this strategy?



Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

Real world chosen-plaintext attacks

• In May 1942, US Navy
cryptanalysts discovered that Japan
was planning an attack in the
Central Pacific by intercepting a
message containing the ciphertext
fragment ”AF” which they believed
corresponded to ”Midway island”.

• Unfortunately, their superiors in
Washington were unconvinced, so
they devised the following plan: US
forces at Midway send a plaintext
message that their freshwater
supplies were low.

• The Japanese intercepted this
message and reported to their
superiors the ”AF” was low on
water.

Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

CPA security for multiple encryptions

The definition for indistinguishable encryptions under a
chosen-plaintext can easily be extended to indistinguishable
multiple encryptions in the same way that indistinguishability
encryption in the presence of an eavesdropper was.

The text takes a somewhat simpler approach that can model
attackers that can adaptively choose plaintexts to be encrypted,
even after observing previous ciphertext.

The attacker has access to a “left-or-right” oracle LRk,b that, on
input a pair of equal-length messages m0,m1, computes the
ciphertext c  Enck(mb) and returns c .*

*Here b is a random bit chosen at the beginning of the experiment.



Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

Left-or-right oracles

“Left-or-right” oracles generalize the previous definition of
multiple-message security (Definition 3.19) because instead of
outputting the lists ~

M0 = (m0,1, . . . ,m0,t) and
~
M1 = (m1,1, . . . ,m1,t) the attacker can now sequentially query
LRk,b(m0,1,m1,1), . . . LRk,b(m0,t ,m1,t).

This also encompasses the attacker’s access to an oracles, since
the attacker can simply query LRk,b(m,m) to obtain Enck(m).

*Here b is a random bit chosen at the beginning of the experiment.

Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

More formally

The LR-oracle experiment PrivKLR�cpa
A,⇧ (n):

1. A key k is generated by running Gen(1n).

2. A uniform bit b 2 {0, 1} is chosen.

3. The adversary A is given input 1n and oracle access to
LRk,b(·, ·),

4. The adversary A outputs a bit b0.

5. The output of the experiment is defined to be 1 if b0 = b, and
0 otherwise. In the former case, we say that A succeeds.



Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

Indistinguishable encryption under chosen-plaintext

Definition 3.23. An private-key encryption scheme ⇧ = (Gen, Enc,
Dec) has indistinguishable multiple encryptions under a

chosen-plaintext attack, if for all probabilistic polynomial-time
adversaries A there exists a negligible function negl such that

Pr[PrivKLR�cpa
A,⇧ (n) = 1]  1

2
+ negl(n),

where the probability is taken over the random coins used by A, as
well as the random coins used by the experiment.

Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

Good news

Theorem 3.24. Any private-key encryption scheme that is
CPA-secure is also CPA-secure for multiple encryptions.

More Good News. Given any CPA-secure fixed-length encryption
scheme ⇧ = (Gen, Enc, Dec), it is possible to construct a
CPA-secure encryption scheme ⇧0 = (Gen’, Enc’, Dec’) for
arbitrary-length messages quite easily.

.



Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

Keyed functions: Some definitions

A keyed function F is a two-input function
F : {0, 1}⇤ ⇥ {0, 1}⇤ ! {0, 1}⇤ where the first input is called the
key and denoted k , and the second input is just called the input.

The key k will be chosen and then fixed, and we will then be

interested in the single input function Fk(x)
def
= F (k , x).

We assume that F is length-preserving, i.e., |Fk(x)| = |x | = |k |,
and e�cient, i.e., there is a deterministic polynomial-time
algorithm that computes F (k , x).

Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

Keyed functions: Some observations

• A keyed function F induces a natural distribution on functions
given by choosing a random key k  {0, 1}n and then
considering the resulting function Fk .

• Intuitively, we call F pseudorandom if the function Fk (for a
randomly chosen k) is indistinguishable in polynomial time
from a function chosen uniformly at random from the set of
all functions from {0, 1}n to {0, 1}n, denoted Funcn.

• This week’s puzzler: How big is Funcn?



Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

Constructing pseudorandom functions: A daunting task

• We wish to construct a keyed function F such that Fk (for
k  {0, 1}n chosen uniformly at random) is indistinguishable
from f (for f  Funcn).

• There are at most 2n functions in the former set and exactly
2n·2

n
functions in the second. Despite this, the ”behavior” of

these function must look the same to any polynomial-time
distinguisher.

• What ”behavior” are we talking about? Well, we could
require that every polynomial-time distinguisher D that
receives a description of the pseudorandom function Fk output
1 with ”almost” the same probability as when it receives a
description of a random function f .

Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

Pseudorandom Functions

Definition 3.25. Let F : {0, 1}⇤ ⇥ {0, 1}⇤ ! {0, 1}⇤ be an e�cient
length-preserving, keyed function. We say that F is a
pseudorandom function if for all probabilistic polynomial-time
distinguishers D, there exists a negligible function negl such that:

���Pr[DFk (·)(1n) = 1]� Pr[D f (·)(1n) = 1]
���  negl(n),

where k  {0, 1}n is chosen uniformly at random and f is chosen
uniformly at random from the set of functions mapping n-bit
strings to n-bit strings.



Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

Pseudorandom Function, Not

We gain some intuition about what a psuedorandom function
might look like by examining one that it not.

Example 3.26. Define the keyed, length-preserving function F by
F (k , x) = k � x . Note that for any input x , the value Fk(x) is
uniformly distributed (which k is).*

Define a distinguisher D that queries its oracle O on arbitrary,
distinct points x1, x2 to obtain values y1 = O(x1) and y2 = O(x2),
and outputs 1 if and only if y1 � y2 = x1 � x2. If O = Fk , then D

outputs 1 in all cases. On the other hand, if O = f for f chosen
uniformly from Funcn, then probability that f (x1)� f (x2) = x1� x2

is 2�n. The di↵erence is |1� 2�n| is not negligible.

*We’re o↵ to a good start.

Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

On the existence of pseudorandom functions

• You guessed it, we don’t really
know.

• However, very e�cient primitives
called block ciphers are widely
believed to be pseudorandom
functions. (More on this soon.)

• Also, it is known that
pseudorandom functions exist if
and only if pseudorandom
generators do.



Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

First shot

• We define Enck(m) = Fk(m).

• Since f (m) for a random function

is a random string and Fk is
supposed to ”look like” a random
function, then we expect Fk(m)
reveals no information about m.

• There is however a rub.

Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

Next shot

We encrypt by applying the pseudorandom function to a random

value r (rather than the plaintext) and XORing the result with the
plaintext.

This is another instance of XORing a pseudorandom “pad” with
the message, except this time an independent pseudorandom pad
is used each time.



Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

The encryption scheme

Construction 3.30. Let F be a pseudorandom function. Define a
private-key encryption scheme for messages of length n as follows:

• Gen: On input 1n, choose k  {0, 1}n uniformly at random
and output it as the key.

• Enc: On input a key k 2 {0, 1}n and a message m 2 {0, 1}n,
choose r  {0, 1}n uniformly at random and output the
ciphertext

c := hr ,Fk(r)�mi.
• Dec: On input a key k 2 {0, 1}n and a ciphertext c = hr , si ,
output the plaintext message

m := Fk(r)� s.

Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

Proving our construction is CPA-secure

Theorem 3.31. If F is a pseudorandom function, then Construction
3.30 is a fixed-length private-key encryption scheme for messages
of length n that has indistinguishable encryption under a
chosen-plaintext attack.
Proof. Define a modified encryption scheme e⇧ = (gGen,gEnc, gDec)
that is exactly the same as ⇧ = (Gen,Enc,Dec), except that a
truly random function f is used in place of Fk .

Fix an arbitrary PPT adversary A, and let q(n) be a polynomial
upper bound on the number of queries that A(1n) makes to its
encryption oracle. We first show that

���Pr
h
PrivKcpa

A,⇧(n) = 1
i
� Pr

h
PrivKcpa

A,e⇧
(n) = 1

i���  negl(n).



Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

Proof by reduction

The basic idea of the proof should be familiar by now:

• We use A to construct a distinguisher D for the
pseudorandom funuction F . The distinguisher is given oracle
access to some function O and its goal is to determine
whether this function is “pseudorandom” or “random”.

•
D emulates experiment PrivKcpa for A. If A succeeds D
guesses its oracle must be a pseudorandom function. If A
fails, then D guesses its oracle must be truly random.

Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

The distinguisher D

Distinguisher D: D is given input 1n and access to an oracle
O : {0, 1}n ! {0, 1}n.
1. Run A(1n). Whenever A queries its oracle on message m, answer as

follows:

1.1 Choose r  {0, 1}n uniformly at random.
1.2 Query O(r) and obtain response y .
1.3 Return the ciphertext hr , y �mi to A.

2. When A outputs messages m0,m1 2 {0, 1}n, choose a random bit
b  {0, 1} and then:

2.1 Choose r  {0, 1}n uniformly at random.
2.2 Query O(r) and obtain response y .
2.3 Return the ciphertext hr , y �mbi to A.

3. Continue answering any encryption oracle queries of A as before.
Eventually A outputs a bit b0. Output 1 if b0 = b, and output 0
otherwise.



Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

We establish our first claim

1. If D’s oracle is a pseudorandom function, then the view of A when
run as a sub-routine by D is distributed identically to the view of A
in experiment PrivKcpa

A,⇧(n). Thus,

Pr
k {0,1}n

h
D

Fk (·)(1n) = 1
i
= Pr[PrivKcpa

A,⇧(n) = 1],

where k  {0, 1}n is chosen uniformly at random.

2. If D’s oracle is a random function then A view when run as a
sub-routine by D is distributed identically to the view of A in
experiment PrivKcpa

A,e⇧
(n). Thus,

Pr
f Funcn

h
D

f (·)(1n) = 1
i
= Pr[PrivKcpa

A,e⇧
(n) = 1],

where f  Funcn is chosen uniformly at random.

Since F is pseudorandom there exists a negligible function negl for which
���Pr

h
D

Fk (·)(1n) = 1
i
� Pr

h
D

f (·)(1n) = 1
i���  negl(n).

Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

Our second claim

Next we show that

Pr
h
PrivKcpa

A,e⇧
(n) = 1

i
 1

2
+

q(n)

2n
.

where recall that q(n) is polynomial upper bound on the number
of queries A makes to its encryption oracle.



Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

Establishing our second claim

Every time a message m is encrypted, a random r  {0, 1}n is
chosen and the ciphertext is set equal to hr , f (r)�mi. Let rc
denote the random string used when generating the challenge
ciphertext c = hrc , f (rc)�mbi. There are two cases:

1. The value rc is used by the encryption oracle to answer at

least one of A’s queries: A is in the money since whenever
the oracle returns a ciphertext hr , si, the adversary learns the
value of f (r) = s �m. Probability of this happening in q(n)
queries is at most q(n)/2n.

2. The value rc is never used by the encryption oracle to answer

any of A’s queries: As far as A is concerned, the value f (rc)
that is XORed with m is completely random, and so A
outputs b0 = b with probability exactly 1/2.

Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

Probabilities of success

Let Repeat denote the event the rc is used by the encryption oracle
to answer at least one of A’s queries.* We have:

Pr[PrivKcpa

A,e⇧
(n) = 1] =

= Pr[PrivKcpa

A,e⇧
(n) = 1 ^ Repeat] + Pr[PrivKcpa

A,e⇧
(n) = 1 ^ Repeat]

 Pr[Repeat] + Pr[PrivKcpa

A,e⇧
(n) = 1 | Repeat]

 q(n)

2n
+

1

2
.

*As on the previous slide, the probability of Repeat is at most q(n)/2n, and the

probability that A success if Repeat does not occur is exactly 1/2.



Introduction CPA-Secure Pseudorandom function Constructing CPA-Secure Schemes

Success

Our first result implies that

Pr
h
PrivKcpa

A,⇧(n) = 1
i
 negl(n) + Pr

h
PrivKcpa

A,e⇧
(n) = 1

i

while our second result states that

Pr[PrivKcpa

A,e⇧
(n) = 1]  q(n)

2n
+

1

2
.

Putting these two together yields

Pr
h
PrivKcpa

A,⇧(n) = 1
i
 negl(n) +

q(n)

2n
+

1

2
.


