Block ciphers And modes of operation

Foundations of Cryptography Computer Science Department Wellesley College

Fall 2016

INTRODUCTION PSEUDORANDOM PERMUTATIONS BLOCK CIPHERS MODES OF OPERATION $Table \ of \ contents$

Introduction

Pseudorandom permutations

Block Ciphers

Modes of Operation

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・ ・ 日 ・ うへぐ

Keyed permutations: Some definitions

Definition. Let $F : \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ be an efficient, length-preserving, keyed function. We call F a *keyed permutation* if for every k, the function $F_k(\cdot)$ is *one-to-one*.

Definition. We say that a keyed permutation is *efficient* if there is a polynomial time algorithm computing $F_k(x)$ given k and x, as well as a polynomial-time algorithms computing $F_k^{-1}(x)$ given k and x.

Remark. The input and output lengths, called the *block size* are the same, but the key length may be smaller or larger than the block size.

Pseudorandom permutations

Definition. Let $F : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}^*$ an efficient keyed permutation. We say that F is a *pseudorandom permutation* if for all probabilistic polynomial-time distinguishers D, there exists a negligible function negl such that:

$$\left| \mathsf{Pr}[D^{F_k(\cdot)}(1^n) = 1] - \mathsf{Pr}[D^{f(\cdot)}(1^n) = 1] \right| \leq \mathsf{negl}(n),$$

where $k \leftarrow \{0,1\}^n$ is chosen uniformly at random and f is chosen uniformly at random from the set of permutations mapping *n*-bit strings to *n*-bit strings. Pseudorandom functions and permutations are polynomially indistinguishable

Theorem 3.27. If F is a pseudorandom permutation then it is also a pseudorandom function.

Proof. The basic idea behind the proof is that a random function f looks identical to a random permutation unless a distinct pair of values x and y are found for which f(x) = f(y). The probability of finding such points x, y using a polynomial number of queries is negligible.

- If F is an efficient pseudorandom permutation then cryptographic schemes based on F might require honest parties to compute both F_k and F⁻¹_k.
- We may wish that F_k is indistinguishable from a random permutation even if the distinguisher is given oracle access to the inverse permutation.

・ロト ・日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Sac

Instead of doing jail time, I'm performing eighteen bundred bours of community service.*

Strong pseudorandom permutations

Definition 3.28. Let $F : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}^*$ an efficient keyed permutation. We say that F is a strong pseudorandom permutation if for all probabilistic polynomial-time distinguishers D, there exists a negligible function negl such that:

$$\left| \mathsf{Pr}[D^{F_k(\cdot),F_k^{-1}(\cdot)}(1^n) = 1] - \mathsf{Pr}[D^{f(\cdot),f^{-1}(\cdot)}(1^n) = 1] \right| \leq \mathsf{negl}(n),$$

where $k \leftarrow \{0, 1\}^n$ is chosen uniformly at random and f is chosen uniformly at random from the set of permutations mapping *n*-bit strings to *n*-bit strings.

- From your reading you know that stream ciphers can be modeled as pseudorandom generators.
- The analogue for the case of a strong pseudorandom permutation is a *block cipher*.
- Block ciphers are not secure encryption schemes. Rather, they are building blocks that can be used to construct secure schemes.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sac

Modes of operations*

- A mode of operation is essentially a way of encrypting arbitrary-length messages using a block cipher (i.e., pseudorandom permutation).
- Note that messages can be unambiguously padded to a total length that is a multiple of the block size by appending a 1 followed by sufficiently-may 0's. Our notation: ℓ blocks each of size n.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

*Donald has volunteered to help demonstrate.

Electronic code book (ECB) mode

Electronic code book. Given a plaintext message $m = m_1, \ldots, m_\ell$, the ciphertext is obtained by "encrypting" each block separately, i.e., $c = \langle F_k(m_1), \ldots, F_k(m_\ell) \rangle$.

Donald does ECB

- ECB is deterministic and therefore cannot be CPA-secure.
- Worse, ECB-mode encryption does not even have indistinguishable encryptions in the presence of eavesdroppers.

・ロト ・日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Sac

*Uncompressed bitmap format encrypted using AES in ECB mode.

Cipher block chaining (CBC) mode

Cipher block chaining. We choose a random initial vector (*IV*) of length *n*. The ciphertext is obtained by applying the pseudorandom permutation to the XOR of the current plaintext block and the previous ciphertext block. That is, we set $c_0 = IV$ and then, for i = 1 to ℓ , set $c_i = F_k(c_{i-1} \oplus m_i)$.

Donald disappears*

- Encryption in CBC is probabilistic and it has been proven that if F is a pseudorandom permutation then CBC-mode encryption is CPA-secure.
- All is not rosie in cipherland however: Encryption must be carried out sequentially. If parallel processing is available CBC may not be the most efficient choice.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Sar

3

*Uncompressed bitmap format encrypted using AES in CBC mode.

Output feedback (OFB) mode

Output Feedback mode. Again a random initial vector (*IV*) of length *n* is chosen and a stream is generated from *IV* as follows: Define $r_0 := IV$ and set the *i*th block of the stream $r_i = F_k(r_{i-1})$. Then, for i = 1 to ℓ , set $c_i = m_i \oplus r_i$.

Donald stays away

- This mode is also probabilistic and it and can be shown to be CPA-secure.
- Both encryption and decryption must be carried out sequentially, but the bulk of the computation* can be carried out independently of the message.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Sac

*Namely computing the pseudorandom stream.

Counter (CTR) mode

Randomized counter mode. A random initial vector (*IV*) of length n is chosen, this is referred to as ctr. Then a stream is generated from *IV* by computing $r_i := F_k(\text{ctr} + i)$ where ctr and i are viewed as binary numbers and addition is performed modulo 2^n . Finally, the *i*th ciphertext block is computed as $c_i = m_i \oplus r_i$.

*There are a number of different types of counter modes.

Donald gets tired of waiting in the wings

- Again this mode is probabilistic and it and can be shown to be CPA-secure.
- Both encryption and decryption can be fully parallelized and, as with OFB mode, it is possible to generate the pseudorandom stream ahead of time.
- Finally, it is possible to decrypt the *i*th block of ciphertext without decrypting anything else*.

*A property known as *random access*.

INTRODUCTION

DRANDOM PERMUTATIONS

BLOCK CIP

Modes of Operation

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ◆ ○ ◆

Randomized counter (CTR) mode is CPA-secure

Theorem 3.32. If F is a pseudorandom function, then randomized counter mode has indistinguishable encryption under a chosen-plaintext attack.

Proof. As previously, we prove counter mode is CPA-secure when a truly random function is used. We then prove that replacing the random function by a pseudorandom function cannot make the scheme insecure.

Let ctr^{*} denote the initial value used when the challenge ciphertext is encrypted in the PrivK^{cpa} experiment. When a random function is used in CTR mode, security is achieved as long as each block c_i is encrypted using a value ctr^{*} + *i* that was never used by the encryption oracle to answer any of its queries since in this case $f(ctr^* + i)$ is completely random.

A first step

Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ denote the randomized counter mode encryption scheme, and let $\widetilde{\Pi} = (\widetilde{\text{Gen}}, \widetilde{\text{Enc}}, \widetilde{\text{Dec}})$ be the encryption scheme that is identical to Π except that a truly random permutation f is used in place of F_k .

Fix an arbitrary PPT adversary \mathcal{A} , and let q(n) be a polynomial-upper bound on the number of oracle queries made by $\mathcal{A}(1^n)$ as well as on the maximum number of blocks of any such query and the maximum number of blocks in m_0, m_1 .

First note that as in the proof of Theorem 3.31 there exists a negligible function negl such that

$$\left| \mathsf{Pr}\left[\mathsf{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(\textit{n}) = 1 \right] - \mathsf{Pr}\left[\mathsf{Priv}\mathsf{K}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(\textit{n}) = 1 \right] \right| \leq \mathsf{negl}.$$

Next we claim that

$$\mathsf{Pr}\left[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\widetilde{\Pi}}(n)=1
ight] \leq rac{1}{2}+rac{2q(n)^2}{2^n}.$$

Combining this with the previous inequality we see that

$$\mathsf{Pr}\left[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\mathsf{\Pi}}(n)=1
ight] \leq rac{1}{2}+rac{2q(n)^2}{2^n}+\mathsf{negl}(n).$$

Since q is a polynomial, $\frac{2q(n)^2}{2^n}$ is negligible and we're done (well done once we establish the claim.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The adversary is polynomially bounded

Let $\ell^* \leq q(n)$ denote the length (in blocks) of the messages m_0, m_1 output by \mathcal{A} in experiment $\operatorname{PrivK}_{\mathcal{A},\widetilde{\Pi}}^{\operatorname{cpa}}(n)$, and let ctr^* denote the initial value used when the challenge ciphertext is encrypted.

Similarly, let $\ell_i \leq q(n)$ be the length (in blocks) of the *i*th encryption-oracle query and ctr_i denote the initial value used when answering this query.

When the challenge ciphertext is encrypted, f is applied to the values

$$\mathsf{ctr}^* + 1, \dots, \mathsf{ctr}^* + \ell^*$$

while when the ith is answered, the function f is applied to the values

$$\operatorname{ctr}_i + 1, \ldots, \operatorname{ctr}_i + \ell_i.$$

There are two cases to consider

- Suppose there do not exist any i, j, j' ≥ 1 for which ctr_i + j = ctr* + j'. Then, the values f(ctr* + 1),..., f(ctr* + ℓ*) are independently and uniformly distributed since f was not applied to any of these when encrypting oracle queries. The challenge text is encrypted with a random string and the probability that A outputs b' = b is exactly 1/2 as in the one-time pad.
- 2. There exists $i, j, j' \ge 1$ for which $\operatorname{ctr}_i + j = \operatorname{ctr}^* + j'$. In this case \mathcal{A} has it made in the shade since it can easily determine the value $f(\operatorname{ctr}_i + j) = f(\operatorname{ctr}^* + j')$ from the answer to its *i*th oracle query. We analyze the probability that this occurs.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Probability of overlaps continued

The probability is as large as possible when $\ell^* = \ell_i = q(n)$ for all *i*. Let Overlap_i denote the event that the sequence

 $\operatorname{ctr}_i + 1, \ldots, \operatorname{ctr}_i + q(n)$ overlaps with $\operatorname{ctr}^* + 1, \ldots, \operatorname{ctr}^* + q(n)$ and let Overlap denote the event that $\operatorname{Overlap}_i$ occurs from some *i*. By the union bound

$$\Pr[\text{Overlap}] \leq \sum_{i=1}^{q(n)} \Pr[\text{Overlap}_i].$$

Probability of overlaps

Fixing ctr^* , event Overlap; occurs exactly when ctr_i satisfies

$$\operatorname{ctr}^* + 1 - q(n) \leq \operatorname{ctr}_i \leq \operatorname{ctr}^* + q(n) - 1.$$

Since there are 2q(n) - 1 values of ctr_i for which Overlap_i can occur,

$$\Pr[\operatorname{Overlap}_i] = \frac{2q(n) - 1}{2^n} < \frac{2q(n)}{2^n}$$

Combining this with the union bound given on the previous slide, we have

$$\mathsf{Pr}[\mathsf{Overlap}] \leq \sum_{i=1}^{q(n)} \frac{2q(n)}{2^n} = \frac{2q(n)^2}{2^n}.$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 - 釣�?

Bounds on the success probability

Block length and security*

Remark. If an input to the block cipher is used more than once then security can be violated. Thus, it is not only the *key length* of a block cipher than is important, but also its *block length*

Example. Suppose we use a block cipher with block length 64-bits. Even if a completely random function with this block length is used, an adversary can achieve success with probability roughly $\frac{1}{2} + \frac{q^2}{2^{63}}$ in a chosen-plaintext attack with it makes q queries, each q blocks long.

*Ghost of Disney past.

INTRODUCTION PSEUDORANDON		1 PERMUTATIONS	BLOCK CIPHERS		Modes of Operation
Bad new	ws for	BULWWKIT DE MCOSE			
Plaintext	Bois	owes	Bullwinkle	\$10,000	
Cipherte	(t tsrwmqp	wplsmaka	os02%sb@	gwom*b×z	
Altered Ciphertext	os02%sb@	wplsmaka	tsrwmqp	gwom*bxz	
Ciphertext	Bullwinkle	owes	Bois	\$10,000	

*Well yes, but not our job. Issues of *message integrity* or *message authentication* should be dealt with separately from encryption.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <