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Task 1: Computing the Optimal Annotation of a Sequence Using a HMM 
 
Suppose we have a HMM with the following model parameters: 
 
b1(A) = 0.28  b2(VER) = 0.90  a11 = 0.40 a31 = 0.48 
b1(E) = 0.04  b2(AVE) = 0.10  a12 = 0.59  a32 = 0.04 
b1(H) = 0.04  b3(ER) = 0.50   a13 = 0.01  a33 = 0.48 
b1(I) = 0.28  b3(AV) = 0.50   a21 = 0.27 
b1(R) = 0.04      a22 = 0.03 
b1(S) = 0.28      a23 = 0.70 
b1(V) = 0.04 
 
Using the Viterbi algorithm for the observation sequence HAVERAVERIVERS, complete 
the two tables (dynamic programming and backtracking) below to compute both (a) the 
natural logarithm of the probability of the optimal annotation of the observation sequence 
and (b) the optimal annotation of the observation sequence. You should assume the 
optimal state sequence begins with state #1. 
 
Dynamic Programming Table 
 

-3.2 -5.4 -9.5 -12.5 -10.6 -8.6 -12.8 -11.0       

-∞ -∞ -∞ -6.1 -6.0 -∞ -∞ -11.9       

-∞ -∞ -8.5 -∞ -9.9 -∞ -7.1 -∞       

 
 
Backtracking Table 
 

-1 1 1 3 2 2 1 3       

-1 -1 -1 1 1 1 2 2       

-1 -1 1 1 3 2 2 1       

 
 
What is the natural logarithm of the probability of the optimal annotation of the 
observation sequence HAVERAVERIVERS? 
 
 
What is the optimal annotation of the observation sequence HAVERAVERIVERS? 



 

 3 

Task 2: Computing the Optimal Annotation of a Sequence Using a GMM 
 
Suppose we have a general Markov model (GMM) with the following model parameters: 
 
b1(H) = 0.9  a11 = 0.90 a31 = 0.30  c1(1) = 1.0 c3(1) = 0.1 
b1(T) = 0.1  a12 = 0.05 a32 = 0.30    c3(2) = 0.2 
b2(H) = 0.5  a13 = 0.05 a33 = 0.40  c2(2) = 0.5 c3(3) = 0.4 
b2(T) = 0.5  a21 = 0.02    c2(3) = 0.5 c3(4) = 0.2 
b3(H) = 0.2  a22 = 0.70      c3(5) = 0.1 
b3(T) = 0.8  a23 = 0.28 
 
Using the Viterbi algorithm for the observation sequence HTTT, complete the dynamic 
programming table below to compute the natural logarithm of the probability of the 
optimal annotation of the observation sequence. You should assume the optimal state 
sequence begins with state #1. 
 
Dynamic Programming Table 
 

-0.1 -2.5 -4.9  

-∞ -∞ -5.2  

-∞ -5.6 -5.2  

 
 
What is the natural logarithm of the probability of the optimal annotation of the 
observation sequence HTTT? 
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Task 3: Runtime of Viterbi Algorithm 
 
Suppose we have a HMM with N states and an observation sequence of length T. 
 
Consider the scenario when, for each state, the characters emitted by the state all have the 
same length. For example, all characters emitted by state Q1 have the same length |b1|, all 
characters emitted by state Q2 have the same length |b2|, etc. What is the running time in 
big-Oh notation of the Viterbi dynamic programming algorithm in this scenario? 
 
 
 
 
 
 
 
Consider the scenario when, for each state, the characters emitted by the state can have 
any (differing) length. For example, state Q1 might emit different characters ranging in 
length from 1 to T, state Q2 might emit different characters ranging in length from 1 to T, 
etc. What is the running time in big-Oh notation of the Viterbi dynamic programming 
algorithm in this scenario? 
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Task 4: Runtime of Forward Algorithm 
 
Suppose we have a HMM with N states and an observation sequence of length T. 
 
The Viterbi algorithm enables computation of the probability of the optimal state 
sequence corresponding to the observation sequence. However, there are other values we 
may be interested in computing besides the probability of the optimal state sequence. 
 
The evaluation problem is the problem of computing the probability that an observation 
sequence was produced by the model. Said another way, we may wish to score how well 
a given model matches a given observation sequence. We can score how well a model 
matches an observation sequence using the Forward algorithm. Whereas the Viterbi 
algorithm computes the probability of the optimal state sequence, the Forward algorithm 
computes the probability of all state sequences. The Forward algorithm computes the 
probability that all state sequences (in sum) generated the observation sequence, rather 
than identifying the single state sequence that was most likely to generate the observation 
sequence. Below is a recurrence describing the Forward algorithm (notice the difference 
between the Viterbi algorithm and the Forward algorithm is that the “max” in the Viterbi 
algorithm has been replaced with a summation in the Forward algorithm): 
 
 
 
 
 
 
 
 
 
The above recurrence represents the scenario when, for each state, the characters emitted 
by the state all have the same length. For example, all characters emitted by state Q1 have 
the same length |b1|, all characters emitted by state Q2 have the same length |b2|, etc. What 
is the running time in big-Oh notation of the Forward dynamic programming algorithm in 
this scenario? 
 
 
 
 
 
 
Although the recurrence is not shown, consider the scenario when, for each state, the 
characters emitted by the state can have any (differing) length. For example, state Q1 
might emit different characters ranging in length from 1 to T, state Q2 might emit 
different characters ranging in length from 1 to T, etc. What is the running time in big-Oh 
notation of the Forward dynamic programming algorithm in this scenario? 
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Task 5: Enhancing a Gene Finding HMM to Include Kozak Sequences 
 
Consider a gene-finding HMM with the following architecture 
 

 
 
specified by the following parameters: 
 
b.Intergenic(A) = 0.28    bCodons(AAA) = 0.03 
b.Intergenic(C) = 0.22    bCodons(AAC) = 0.02 
b.Intergenic(G) = 0.22    bCodons(AAG) = 0.01 
b.Intergenic(T) = 0.28    bCodons(AAT) = 0.02 
bStartCodons(ATG) = 0.90    bCodons(ACA) = 0.01 
bStartCodons(TTG) = 0.02    bCodons(ACC) = 0.02 
bStartCodons(GTG) = 0.08    ... 
bStopCodons(TAA) = 0.65    bCodons(TTC) = 0.02 
bStopCodons(TGA) = 0.28    bCodons(TTG) = 0.01 
bStopCodons(TAG) = 0.07    bCodons(TTT) = 0.02 
 
a.Intergenic .Intergenic = 0.994    aCodons .Intergenic = 0.00 
a.Intergenic StartCodons = 0.006   aCodons StartCodons = 0.00 
a.Intergenic Codons = 0.00    aCodons Codons = 0.997 
a.Intergenic StopCodons = 0.00    aCodons StopCodons = 0.003 
aStartCodons .Intergenic = 0.00    aStopCodons .Intergenic = 1.00 
aStartCodons StartCodons = 0.00   aStopCodons StartCodons = 0.00 
aStartCodons Codons = 1.00    aStopCodons Codons = 0.00 
aStartCodons StopCodons = 0.00   aStopCodons StopCodons = 0.00 
 
 
In this task, your goal is to enhance the above HMM so that it models a form of Kozak 
sequences. Suppose that in a genome of interest, 90% of known genes have a Kozak-like 
sequence immediately upstream of their start codons and 10% of genes show no evidence 
of a Kozak sequence. For the 90% of known genes with a Kozak-like sequence 
immediately upstream of their start codons, 60% have the 4-mer CACC immediately 
preceding their start codon and 40% have the 4-mer CGCC immediately preceding their 
start codon. 
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Describe any necessary modifications to the HMM that would allow it to model Kozak-
like sequences as described above. Modifications may relate to the number of states, the 
emission probabilities, or the transition probabilities. If the HMM architecture changes, 
please draw the new architecture. 
 
 
 


