

Pairwise Alignment Problem:
Given two sequences, determine their optimal (i.e., best scoring) alignment.

The Elegance of Alignment

The problem of finding the best alignment of two sequences has two important properties:
(1) The solution can be found by looking at the solutions to subproblems
(2) Subproblems often overlap

Indeed, to find the best alignment of two sequences, we need only look at 3 slightly smaller alignments (i.e., remove one or two characters from the sequences).

The Elegance of Alignment

The Elegance of Alignment

The problem of finding the best alignment of two sequences has two important properties:
(1) The solution can be found by looking at the solutions to subproblems
(2) Subproblems often overlap

The method for determining the best alignment is known as a dynamic programming algorithm.

The Elegance of Alignment

Score Table

AGCGTTA
 ACGTGA

How Is Each Entry in the Table Determined?

- Each entry depends on 3 previous entries (because of problem's "elegance")
- Each entry also depends on scores used (match, mismatch, gap)

Alignment Score Table

AGCGTTA

ACGTGA

	A		C	G	T	G	A
	0	-6	-12	-18	-24	-30	-36
A	-6	5	-1	-7	-13	-19	-25
G	-12	-1	1	4	-2	-8	-14
C	-18	-7	4	-2	0	-6	-12
G	-24	-13	-2	9	3	5	-1
T	-30	-19	-8	3	14	8	2
T	-36	-25	-14	-3	8	10	4
A	-42	-31	-20	-9	2	4	15

Alignment Score Table

AGCGTTA

ACGTGA

		A	C	G	T	G	A
	0	-6	-12	-18	-24	-30	-36
A	-6						
G	-12						
C	-18						
G	-24						
T	-30						
T	-36						
A	-42						

How Do We Re-Create the Alignment?

AGCGTTA
 ACGTGA

A-CGTGA

- The problem of finding the best alignment for two sequences has a couple of interesting properties:
(1) The best alignment can be determined using the best alignments of subproblems
(2) Subproblems often overlap
- Because of these properties, we can fill in a table of solutions to subproblems
- Each table entry is determined from 3 of the preceding entries
- The filled-in table tells us the best alignment!

Global vs. Local

TGGTAGATTCCCACGAGATCTACCGAGTATGAGTAGGGGGACGTTCGCTCGG GССТСТААСАСАСТGСАСGAGATCAACCGAGATATGAGTAATACAGCGGTACGGG

Global Alignment Score: 60
---TGGTAGATTC-C--CACGAGATCTACCGAG-TATGAGTAGGGGGAC-GTTCGCT-C-GG
 GССТ-СТА-АСАСАСТGСАСGAGATCAACCGAGATATGAGTA---ATACAG--CGGTACGGG

Local Alignment Score: 105
CACGAGATCTACCGAG-tatgagta
llllllll |llll |llllll
CACGAGATCAACCGAGATATGAGTA

AGCGTTA

ACGTGA

	A		C	G	T	G	A
	0	-6	-12	-18	-24	-30	-36
A	-6	5	-1	-7	-13	-19	-25
G	-12	-1	1	4	-2	-8	-14
C	-18	-7	4	-2	0	-6	-12
G	-24	-13	-2	9	3	5	-1
T	-30	-19	-8	3	14	8	2
T	-36	-25	-14	-3	8	10	4
A	-42	-31	-20	-9	2	4	15

Local Alignment

AGATCAC

CGACAG

	C		G	A	C	A	G
	0	0	0	0	0	0	0
A	0						
G	0						
A	0						
T	0						
C	0						
A	0						
C	0						

AGATCAC

 CGACAG| | C | | G | A | C | A | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| A | 0 | 0 | 0 | 5 | 0 | 5 | 0 |
| G | 0 | 0 | 5 | 0 | 1 | 0 | 10 |
| A | 0 | 0 | 0 | 10 | 4 | 6 | 4 |
| T | 0 | 0 | 0 | 4 | 6 | 0 | 2 |
| C | 0 | 5 | 0 | 0 | 9 | 3 | 0 |
| A | 0 | 0 | 0 | 5 | 3 | 14 | 8 |
| C | 0 | 5 | 0 | 0 | 10 | 8 | 10 |

Linear Gap Penalty

With linear gap scoring, every gap has the same score

Local Alignment

AGATCAC CGACAG

	C		G	A	C	A	G
	0	0	0	0	0	0	0
A	0	0	0	5	0	5	0
G	0	0	5	0	1	0	10
A	0	0	0	$1 p$	4	6	4
T	0	0	0	4	6	0	2
C	0	5	0	0	9	3	0
A	0	0	0	5	3	14	8
C	0	5	0	0	10	8	10

Affine Gap Penalty

With affine gaps, gap scores are determined from two scores:

- alpha, a, is the gap opening score
- beta, β, is the gap extension score

AGGCTACGATCGATCGAGTT

If the match score is +5 , the mismatch score is -4 , and the affine gap scores are $\alpha=-7$ and $\beta=-2$, then the alignment score is 22 .

Not All Nucleotides Are Created Equal!

Match score: 5
Mismatch score: -4

	\mathbf{A}	\mathbf{C}	\mathbf{G}	\mathbf{T}
\mathbf{A}	5	-4	-4	-4
\mathbf{C}	-4	5	-4	-4
\mathbf{G}	-4	-4	5	-4
\mathbf{T}	-4	-4	-4	5

	\mathbf{A}	\mathbf{C}	\mathbf{G}	\mathbf{T}
\mathbf{A}	5	-4	-1	-4
\mathbf{C}	-4	5	-4	-1
\mathbf{G}	-1	-4	5	-4
\mathbf{T}	-4	-1	-4	5

BLOSUM62 Matrix

Amino Acids Work Too!!!

MLVIGSL

MHWNLV

Protein vs. Nucleotide

- Protein searches tend to find more distant similarities
-Why?
- 4 vs. 20 letter alphabet
- Different nucleotide sequences can code for the exact same sequence of amino acids
- Better protein substitution matrices
- Protein databanks are smaller

