Clustering

Data... And Lots of It!

Gene 1	$\int 0.6$	4.4	1.3	1.0		3.1	
Gene 2	1.5	2.6	5.2	0.8		2.8	2.9
Gene 3	0.7	3.7	2.4	1.9		1.5	
Gene 4	0.3	0.7	0.2	1.3		4.9	3.0
Gene 5	3.1	3.0	2.1	1.4	\ldots	4.2	0.9
...				
Gene n-1	1.8	2.5	1.8	0.7		2.7	3.
Gene n	(0.5	3.4	3.0	0.5			2.5

RNA-seq: What is it good for?

High-throughput RNA sequencing experiments (RNA-seq) offer the ability to measure simultaneously the expression level of thousands of genes in a single experiment!

- It may be useful to partition the n genes into groups of similarly expressed genes
- Clustering is the art of finding groups of genes, such that genes in the same group are as similar to each other as possible and as dissimilar to genes in other groups as possible

Clustering Algorithms

- Hierarchical clustering
- CAST
- k-means clustering
- Model-based clustering

CAST Clustering Algorithm

- Repeat until all points (genes) are assigned to a cluster
- Choose a point (gene) not already assigned to a cluster and assign it to a new cluster C
- Repeat until the cluster C converges
- Add to Cany unassigned points (genes) that are closer to the points (genes) in C, on average, than some threshold
- Remove from Cany points (genes) that are farther from the other points (genes) in C, on average, than some threshold

k-means Clustering Algorithm

- Randomly assign each point (gene) to one of k clusters
- Repeat until convergence
- Calculate mean of each of the k clusters
- Assign each point (gene) to the cluster with the closest mean

Model-Based Clustering

- Randomly assign each point (gene) to one of k clusters
- Repeat until convergence
- Calculate model of each of the k clusters
- Assign each point (gene) to the cluster with the closest model

Clustering Algorithms

- Hierarchical clustering
- CAST
- k-means clustering
- Model-based clustering

Model-Based Clustering

Randomly assign each point to one of k clusters (models)

Model-Based Clustering

Assign each point to the most likely model

Model-Based Clustering

Assign each point to the most likely model

Assessing Clustering

- Figure of Merit (FOM)

Apply clustering algorithm to all but one experimental condition and use the left-out condition to assess the predictive power of the clustering algorithm

Clustering Genes vs. Clustering Experiments

		"	${ }_{\mathrm{s}}$	${ }_{8}$			
Gene 1	$\int 0.6$	4.4	1.3	1.0	...	3.1	2.2
Gene 2	1.5	2.6	5.2	0.8	...	2.8	2.9
Gene 3	0.7	3.7	2.4	1.9	...	1.5	1.6
Gene 4	0.3	0.7	0.2	1.3	...	4.9	3.0
Gene 5	3.1	3.0	2.1	1.4	...	4.2	0.9
...	-..
Gene $n-1$	1.8	2.5	1.8	0.7	...	2.7	3.1
Gene n	(0.5	3.4	3.0	0.5	...	1.8	2.5

Assessing Clustering

- Rand Index

Measures similarity of two clusterings, X and Y

$$
R=\frac{a+b}{a+b+c+d}
$$

[^0]
[^0]: $a=$ number of pairs of points in the same cluster in X and in the same cluster in Y
 $b=$ number of pairs of points in different clusters in X and in different clusters in Y
 $c=$ number of pairs of points in the same cluster in X and in different clusters in Y
 $d=$ number of pairs of points in different clusters in X and in the same cluster in Y

