The recognition of faces

D@ OB~
o) /}E

/@O

| s

sz
c2

\ &% VA
‘oQ _8o0s o
p % obes Gige poss i
Paula Elizabeth ‘&O/‘
Johnson Warren . v
HMAX model
Test phase

- - - RHRA¢

FaceNet DeepFace

10/25/21

Why is face analysis important?

Remember/recognize people we've seen before

Categorization - e.g. gender, race, age, kinship

Social communication - emotions/mood, intentions,
trustworthiness, competence or intelligence, attractiveness

Scene understanding, e.g. direction of gaze suggests focus of attention

Why is face recognition hard?
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Face recognition performance in humans

Famous Faces Memory Test (FFMT) 1(437)=0.55
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How good are the best machines?

Public databases of face images serve as benchmarks:
Labeled Faces in the Wild (LFW, L /vis-
> 13,000 images of celebrities, 5,749 different identities

YouTube Faces Database (YTF, http://www.cs.tau.ac.il/~wolf/vtfaces
3,425 videos, 1,595 different identities

Private face image datasets:

(Facebook) Social Face Classification dataset
4.4 million face photos, 4,030 different identities
(Google) 100-200 million face images, ~ 8 million different identities

LFW YTF False accept  _False reject
Facebook DeepFace 97.4% | 914% #2 Q

Google FaceNet 99.6% 95.1% . -
Human performance 97.5% 89.7% : J 3'
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It all began with Takeo Kanade (1973)...

PhD thesis, Picture Processing System by Computer Complex and
Recognition of Human Faces

 Special purpose algorithms to locate eyes,
nose, mouth, boundaries of face

* ~ 40 geometric features, e.g. ratios of
distances and angles between features %
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Eigenfaces for recognition (Turk & Pentland)
Principal Components Analysis (PCA)

Goal: reduce the dimensionality of the data while retaining as much
information as possible in the original dataset

PCA allows us to compute a linear transformation that maps data from
a high dimensional space to a lower dimensional subspace
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http://vis-www.cs.umass.edu/lfw
http://www.cs.tau.ac.il/~wolf/ytfaces

Typical sample training set...

g i g 8 8 g 8 one or more images

per person

aligned & cropped to

common pose, size
8 g simple background
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Sample images from the Yale face database
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Prepare image data for PCA:
* For each image in dataset, place
columns end-to-end to create one
long column vector
* Place column vectors for each image
side-by-side in an MxN matrix
* Subtract the mean vector (average
face) from each column
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Eigenfaces for recognition (Turk & Pentland)

P(xy)

Perform PCA on a large set of training
images, to create a set of eigenfaces,
Ei(xy), that span the dataset

First components capture most of the
variation across the dataset, later
components capture subtle variations

Y(x,y): average face (across all faces)

http://vismod.media.mit.edu/vismod/demos/facerec/basic.html

Each face image F(x,y) can be expressed as a weighted combination of the

eigenfaces Ei(x,y):
F(xy) = P(xy) + Z wi*Ei(x,y)

Representing individual faces

Each face image F(x,y) can be expressed as a weighted combination of the

eigenfaces E;(x,y):
F(xy) = Y(xy) + Z; w*Ei(x,y)

(1) Compute weights w;

4+ Mean Image for novel face image

Recognition process:

(2) Find image min face
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