Video: Edge Detection in Computer Vision Systems

[00:01] [slide 1] In the overview video on edge detection, you learned that our first step toward
understanding what'’s out in the world from vision is to detect and describe intensity changes in
the image. This video digs deeper into the details of how this process is implemented in a
computer vision system. Earlier, we introduced an approach that combines three operations.
The first is smoothing of the image, to remove minor fluctuations of intensity that may be due to
noise in the sensors, and to capture changes taking place at different scales. The second is to
measure changes of intensity using a first or second derivative. We'll explore a method that
combines these first two operations in a way that’s similar to the processing that takes place in
the human eye. Sample results of this processing are shown in the upper right corner, for this
image of the Wellesley lamppost. The last step is to locate features in this result that enable us
to say precisely, where do the intensity changes occur, and are they high-contrast, sharp
changes, or low-contrast, gradual changes, as conveyed by the darkness of these contours in
the lower right corner.

[01:18] [slide 2] We'll first examine the details of these computations for a one-dimensional
intensity profile and then extend the analysis to two-dimensional images. So first, how do we
perform the smoothing operation? We have choices - one strategy is to step through the
intensity profile and at each location, compute the average intensity within a small
neighborhood around each location. [slide 3] In this case, Strategy 1 here, each intensity in the
neighborhood contributes equally to the average. An alternative is to blend together the
intensities in a neighborhood using a smooth function that weighs nearby intensities more
heavily than intensities further away, such as the Gaussian function. In one dimension where
we vary X, the Gaussian function looks like this. It has a parameter sigma that we can use to
control how much smoothing is done. How do we actually use this function for smoothing?

[02:24] [slide 4] We’re going to perform a generic type of computation that we refer to as
convolution. This is a central concept in signal processing, but I'll describe it in a simplified way
that’'s adequate for how we’ll use it in practice. Consider this snippet of an intensity profile that
has a step change of intensity from 10 to 20, also shown on the right. We’ll construct a
convolution operator that vaguely resembles a few samples of a Gaussian function - think of
these as the weights that we’ll use to combine intensities within a neighborhood around each
location. To perform the convolution, we center the operator at each location, multiply the
corresponding values in the operator and the underlying intensity profile, and add up all those
products. We'll put the results in a separate array at the bottom. For the particular location that
I've marked with the red arrow here, we’re multiplying each of the weights by 10, adding up all
those results and we get the value 180, which we place in the same location of the result. The
next location gives us the same result, but then as we move more toward the right, some of the
weights end up being multiplied by the higher value of 20, and the result starts to increase, and
so on. As we move along, we eventually get to a point where all the weights are sitting over this
higher value of 20, and we get a result of 360. We don’t bother computing convolution values at



the two ends of the array where we can't fit the operator completely. The outcome of this
convolution, plotted at the bottom, is that we smoothed out the step change of intensity. We’ll
refer to the intensity profile as I(x), the convolution operator as G(x), and the result as G(x) *
I(x), where the star here denotes the convolution operation.

[04:47] Suppose we wanted instead to compute a straight average of the intensities in a
neighborhood. We can use convolution to compute an average. If we again want to combine
the intensity values within a neighborhood of 5 locations around each image location, to
compute an average, we want to add up the 5 intensities in the neighborhood and divide by 5 -
how can we construct a convolution operator that does this? You can pause the video for a
moment and think about this yourself - the answer is, we can use a convolution operator where
the weights are all the same, 1.

[05:31] [slide 5] What about the derivative operation? We’'ll first consider this operation on its
own, and then combine it with the smoothing operation. We can compute a derivative using the
same generic convolution computation, with a much simpler operator. Computing a first
derivative means measuring the change in a signal from one location to the next, so we can
take the intensity at each location and subtract its neighbor on the left, by convolving with a
two-element operator, [-1 +1]. The derivative here is 180-180, or 0, so we put that result in the
same location as our answer here. The signal is not changing yet, but as we shift to the right,
now there is a change from 180 to 190, which is 10, and so on. The resulting derivative is
shown in the middle here and graphed on the left. Around the middle of the rise in intensity, the
first derivative hits a peak as we described in the first video. To compute a second derivative,
we could just perform a convolution again with the same derivative operator, [-1 +1], but applied
now to the first derivative. We can also perform a second derivative with one convolution
applied to the smoothed intensity at the top, using an operator with three elements, [+1 -2 +1].
The result of this convolution is shown at the bottom, and you can see that it crosses zero
around the location of the intensity change - in the array, from +70 to -70, which we also see in
the plot on the left.

[07:30] [slide 6] In this demonstration, we performed one convolution to smooth out the
intensity, then another convolution to compute a derivative, either a first or second derivative.
But we can combine both operations in one convolution, by taking advantage of a useful
mathematical property. On the left here are mathematical expressions that capture what we did.
We first convolved the intensity profile with the Gaussian function that | underlined in brown,
and on the right, the brownish curve is the Gaussian function. In one case, we then performed a
first derivative of the convolution result, but this is equivalent to taking the first derivative of a
Gaussian and then performing one convolution of the intensity profile. What does the first
derivative of a Gaussian look like? It's the green curve shown on the right. So what we mean
here is that we could construct a convolution operator by taking samples of this green curve,
and then one convolution with that operator would perform both the smoothing and derivative
operations all at once. We can do the same thing with the second derivative - here, we



performed a Gaussian convolution, again, and then performed two derivatives, but that’s
equivalent to taking the second derivative of a Gaussian and performing one convolution of this
operator with the intensity profile. What does the second derivative of a Gaussian look like? It
looks like the blue curve on the right here. So what we mean now, is that we could construct a
convolution operator by taking samples of this blue curve, perform one convolution with that
operator, and that would embody both the smoothing and second derivative operations all at
once. [slide 7] In fact this is how | really computed the first and second derivatives of our
one-dimensional intensity profile that | showed you earlier.

[09:50] [slide 8] How do we extend these ideas to the analysis of a two-dimensional image?
Let’s first extend the generic convolution operation to two dimensions. Here’s a snippet of an
image with a step change of intensity in the middle, with a vertical edge here, step change from
1 to 8. We’'ll start with this small 3x3 convolution operator that will have the effect of smoothing
the image intensities within a small neighborhood around each location. It’s again reminiscent
of the Gaussian shape, with a maximum value in the middle and it drops off further away. To
compute the convolution at a particular location, like this location circled in blue, we center the
operator on this location, multiply the corresponding elements between the operator and the
underlying image, and then add up all these products as we did before in one dimension. Here,
the operator values are all multiplied by an intensity of 1 and the sum of the products gives 24,
that we place at the same location in our result. [slide 9] We then shift to the right, and at this
new location, some of the operator values are multiplied by 8, and the sum of the products is
59. [slide 10] We continue on this row and then perform the same computation on all the other
rows. [slide 11] We again don’t bother to compute convolution values for a border around the
image where we can't fit the whole operator, so | just set those values to 0. In the result, we see
a smoother version of the step change of intensity.

[slide 12] Like in one dimension, the Gaussian function is especially good for smoothing an
image. In two dimensions, it's a function of x and y, and it also has this parameter sigma that
controls the spread, or amount of smoothing of the Gaussian. Here is our image of the
Handi-Wipe cloth and the result of smoothing by performing a convolution with a Gaussian
function, with an operator that consists of samples of this function. In this picture, the contrast is
exaggerated relative to the original image.

[12:28] [slide 13] What about differentiation? If we think back to our simple image for a moment,
we could imagine processing the smoothed image row by row, computing a first or second
derivative in the horizontal direction, along each row. [slide 14] But we have a problem here -
suppose, instead of a vertical edge, we have a horizontal edge, and our smoothed image looks
like this. Ignoring the borders, if we just measure intensity changes in the horizontal direction,
we won't pick up the horizontal edge, because there are no changes within each row. We need
to compute derivatives in at least two directions, horizontal and vertical, in order to find the
edges at all orientations in the image. We could perform two separate convolutions to compute
derivatives in the horizontal and vertical directions, but convolutions are expensive, especially



for large images, so we’ll Instead compute a type of derivative that enables us to find intensity
changes in all directions with one convolution.

[13:40] [slide 15] In particular, we’ll compute a Laplacian, which is defined mathematically as
the sum of the second derivatives in the horizontal and vertical directions. We’ll again combine
the smoothing and derivative operations. We could smooth the image with a 2D Gaussian and
then compute the Laplacian, or we can compute the Laplacian of the Gaussian function and
perform one convolution of this new function using samples of this Laplacian of a Gaussian
underlined in blue. What does this function look like? This is the mathematical expression, and |
replaced x-squared + y-squared with r-squared, where r refers to the distance from the center
of the operator, which is the origin of the coordinate frame The function is plotted here, with its
sign reversed. It's circularly symmetric and looks a bit like a mexican hat. The idea is that we’ll
construct a 2D convolution operator by taking samples of this function, and then perform a
convolution of our image with this operator. It's a type of second derivative operation, so you
can figure that the features in the result of this convolution that indicate the locations of intensity
changes, are places where the convolution crosses zero, which we’ll again call the
Zero-crossings.

[15:21] [slide 16] Let’s consider a simple scenario, in which we have a bright blob on the left
here in the image, surrounded by a dark background. The edges of the blob are highlighted in
red, and occur at different orientations in the image. This 3x3 convolution operator in the middle
effectively computes the Laplacian. It embodies a second derivative in the horizontal direction
and a second derivative in the vertical direction, and those two derivatives are added together.
You should confirm for yourself, that this array of values on the right is the result of convolving
this image here with the simple 3x3 operator. Notice that there are positive and negative values
here, with negative values inside the blob, and positive values around the outside of its edge.
The transitions between positive and negative values are the zero-crossings, which are also
highlighted in red. They capture all the intensity changes, or edges at different orientations,
around the blob in the image.

[16:44] [slide 17] In the earlier video on edge detection, | also talked about the importance of
capturing Intensity changes taking place at different scales, using the example of the
Handi-Wipe cloth. If we convolve the image with a Laplacian-of-Gaussian operator constructed
with a small value of sigma, the zero-crossings preserve the intensity changes around the tiny
holes in the cloth. Convolving the image with a larger operator using a larger value of sigma
results in more smoothing of the image, and the resulting zero-crossings capture just the stripes
in the cloth.

[17:21] [slide 18] A final idea that | alluded to earlier, is that some intensity changes in the image
are high-contrast, sharp changes similar to what occurs around the borders of the coins here.
Other changes may be lower-contrast or more gradual changes, such as those resulting from
the engravings on the face of the coins. These different kinds of intensity changes can reflect
different sorts of physical changes taking place in the scene, so this is important information to



capture. Is there a way to extract this information from the convolution of the image with the
Laplacian-of-Gaussian operator? Here’s a sample convolution, again with the brighter areas
corresponding to positive values and the darker areas, such as around the outer rim of the
coins, are the negative values. The zero-crossings are displayed in the bottom left corner, but
they’re also shown with different brightness. For example, the zero-crossings that come from
the high-contrast borders around the edges of the coins are shown darker than the
zero-crossings around the engravings. What I'm actually showing you here is something that
roughly captures the sharpness and contrast of the intensity changes. To see what | actually
measured, over on the bottom right here is a tiny snippet of a convolution. Imagine that there’s
an edge where you have this blue line here, and in the convolution, we end up getting negative
values on one side and positive values on the other. What we actually want to measure is, what
is the rate of change of the convolution across this edge here, in the direction of this red arrow.
We’'re going to refer to this as the slope of the convolution at a particular location. How do we
compute this? First we're going to measure how the convolution is changing in the horizontal
direction, and how it is changing in the vertical direction. We’'ll refer to the change in the
horizontal direction as dx, so here it changed from -10 to 14 so it increased by 24. We'll refer to
the vertical change as dy, which changed from -12 to 14, or increased by 26. In order to
determine how much it's changing perpendicular to my edge here, we're performing this
computation at the bottom where we’re taking the sum of the squares of those two quantities.
It's that quantity there at the location of each zero-crossing that I'm actually displaying on the
left. So the slopes, for example, around the borders of the coins, which are very high-contrast,
sharp edges, are more steep and they’re shown as a darker contour than the slopes of the
zero-crossings around areas like the engravings on the coins.

This completes our video introduction to the detection and description of intensity changes, or
edges, in an image. We're performing these kinds of computations in a way that’s implemented
in computer vision systems. These general kinds of computations are also performed in
biological vision systems - our next class will explore early visual processing in biological
systems in more detail, and we’ll see that although they’re performing similar kinds of
computations, they perform them in quite different ways.



