Video: Getting Started with MATLAB

[00:01] CS332 uses vision software written in MATLAB, a powerful technical computing
environment that’s used in many disciplines, including those that we bring together in this
course. In assignments, you’ll write your own MATLAB code to analyze images, and aspects of
the language that are most useful for this work are described in this online document that’s
linked from the course schedule page. This video introduces you to the MATLAB development
environment.

So let’s get started. I'm working on a Mac and have MATLAB in the toolbar at the bottom of my
screen, but | can also go to the Applications folder in the Go menu and find MATLAB there. |
have Release R2019b installed on my Mac. If you download Wellesley’s current version, it might
be a 2020 release - either of these versions are ok and you can install MATLAB on a Mac or PC.

[01:05] This is the MATLAB Desktop that you'll see when you first launch the application. There’s
a toolbar at the top with icons and dropdown menus, and subwindows that might include the
Current Folder on the left, Command Window in the center, and Workspace on the right. The
borders between the parts can be dragged around, like in any application, and the overall visual
layout can be controlled with the Layout menu at the top. I'm just using the Default layout here.
Each subwindow also has a dropdown menu at the far right end of its title bar that enables you
to do things like close that window or undock it from the main Desktop.

[01:53] So what are these different components of the Desktop? MATLAB is interactive - you can
type commands in the Command Window, for example, a simple assignment statement to
create a variable (num1 = 10). MATLAB evaluates your commands and returns one or more
values that may be printed out. There’s a lot of vertical space in the printout here and we can
avoid that by saying format compact. Then if we bring that variable back again, we see it's
printed out more compactly. I'll create a second variable that’s assigned to an arithmetic
expression that uses the value of the first variable, maybe I'll square it (num2 = 2 + numl~"2).
Now you can guess what the Workspace is - it's the collection of current variables, which are
listed in the Workspace window on the right. If you enter an expression but don’t assign its value
to a variable (sgrt (num2)), MATLAB assigns it to a generic variable named ans and also puts
that in the Workspace. If you add a semicolon at the end of a statement (e11en = 29;)the
variable is created, it's given a value, but the printout is suppressed. That semicolon is really
important when we’re working with large images. Let’s load an image using the MATLAB
function imread - (image = imread(‘kittens.png’)) - butl'll forget the semicolon. So
now you can see it has printed out all the values stored in the array that contains that particular
image. If | bring back that command (I’'m just pressing my up-arrow key to get my most recent
command), but now I’'m going to add that semicolon, and that’'s much better. We can enter c1c if
we want to clear out the printout that’s displayed there, and all the variables are still in place and
we can access them (ellen).

[04:18] What about the Current Folder on the left? At any one time, there’s a Current Folder of
files that we have direct access to. Below the toolbar, above the Command Window here, is the

path to the Current Folder - here it's Users>ellenhildreth>Documents>MATLAB and
there’s nothing in that folder. Let’s navigate to a folder with some content. I'll click on
ellenhildreth in the path. | have these folders at the top level of my Mac and I'll double-click
on Desktop, then on MATLAB intro. [added note: There are also some icons above the
Current Folder window that you can use to navigate around the folders on your computer. If you
hover over them, there’s a popup message about what they do.]

There’s several files in this folder with different file extensions. Files with the .m extension are
simple code files that we refer to as M-Files, and there are two types here. myScript.mis a
script file. I'll double-click on that, which will bring it up in the editor, and the editor by default, will
appear above your Command Window. This script contains a few simple commands and some
comments in green that start with the % sign. We can, for example, create a one-dimensional
vector or array of numbers by writing a set of values inside brackets, and then perform
computations on these vectors, for example, sum up all their values, perform the same
arithmetic calculation on each value in a vector all at once, or combine the contents from two
vectors in an element-by-element way. When we run a script, the statements will be executed
one-by-one as if they were entered directly into the Command Window. You can run a script in
two ways. First, you can click on the green Run triangle at the top in the toolbar. All of the
statements were executed and all the new variables were placed in the Workspace. The first two
statements have semicolons, so their values didn’t get printed out in the Command Window, but
here they are (vect1, vect2). The other statements have no semicolon, so their values were
printed out. We can also run a script by entering the name of the script in the Command
Window. For example, | can write myScript without the .m, and it's executed again.

[06:58] There’s another M-file here, myFunc.m, and that’'s a new function that | defined. Let’s
bring that into the editor. In the header of the function, you see its name myFunc, and note that
the name of the function is the same as the name of the file. MATLAB assumes that functions
that you define will have the same name as the name of the file - if it sees that name myFunc
anywhere in the code, it goes hunting for a file with the same name to find its definition. The
function has two inputs, inputl and input2, and it also has two outputs called arithMean
and geomMean, and it just performs calculations of the arithmetic mean and the geometric mean
of two input numbers. [added note: For each output variable, we need to have at least one
assignment statement in the body of the function that indicates the value to be returned through
the output variable.] In this case, we can’t actually run the function using the Run button at the
top, because we need to supply values for those inputs (if | do, MATLAB tells me that, with an
error at the bottom). | can run this function either in the Command Window or from some other
code file, for example, [meanl,mean2] = myFunc(5,10).

[08:35] The file with the .m1x extension is a MATLAB Live Script, which is a lot like a Python
notebook. Let’s open that up. First, you'll see some new tabs at the top, with toolbars Live
Editor, Insert, and View. A Live Script itself can include text, images, formulas, and you can
also put in executable code boxes. We’ll work with this particular Live Script in our first class, but
just for a taste, let me place my cursor inside this first code box and click on the Run Section
option in the toolbar, and the code is executed and the values are printed out right in place. We

can go back and change statements here and re-execute that section. Any changes, any new
variables that we create will appear in the Workspace with their new values.

Some of the demonstrations of visual processing algorithms that we’ll run are interactive
programs with a graphical user interface. They’re called apps, and they have the .mlapp file
extension. Let’s run this simple app, and | can do that by typing the first file name in the
Command Window (imageApp). Here’s my graphical interface, and | can interact with that, | can
make a selection of images, | can choose between kittens or an Ansel Adams photograph, let’s
load the kittens, and there it is displayed. There are boxes here that | can edit to change values,
for example, let’s suppose | make a neighborhood size of 8 and blur the imagem, and there’s my
blurry kittens. There’s another demonstration at the bottom here, with a threshold. It's going to
create a binary image where all the brightness values that are above 100 in this case will be
displayed as white and anything below that will be displayed as black. So let’s look at our binary
image. When I’'m done interacting with this program, | can click on the quit button. You can
also see files here that are image files with extensions like . png or . jpg. With MATLAB you
can work with many different image formats.

[11:23] A final thing I'd like to show you is how to abort a computation that’s out of control. Let’s
go back to the original script file, and you can see there’s tabs here that allow me to switch
between any of the files that I've opened so far. If we go back to myScript, there’s some code
here that’s initially commented out, but | will uncomment it by selecting it, and I'll use the $x icon
at the top. You can see here that it creates a variable i that is assigned to 0, and aslongas i <
10, it's going to subtract 1 - clearly not a winning strategy. Let’s run that script again, and we see
at the bottom of the Desktop, MATLAB is Busy - it’s in this infinite loop. We can put it out of its
misery by entering control-c.

So in this video, you learned about the logistics of starting MATLAB, the components of the
Desktop, different kinds of code files, and just a tiny taste of the language itself. You can read
much more about the MATLAB language in the document that | showed at the beginning, and
you’ll explore MATLAB in our Zoom classes, starting on the first day.

