Video: Stereo Correspondence Problem

[00:01] [slide 1] In the last video, | described the three main steps of the stereo process. The
first is to extract features from the left and right images whose stereo disparity will be
measured. The second is to determine which features in the left image match up with which
features in the right, and to measure the disparity in position of corresponding features in the
two images. The final step is to use the stereo disparity of the features to compute their depth in
the scene. We said that by far, the most challenging step of this process is the matching step
that we refer to as the stereo correspondence problem. In this video, you'll learn why this
problem is hard, and explore a simple strategy for solving it.

[00:48] Why is the problem hard? In the stereo images you’re looking at here, it’s pretty easy for
you to identify the same features in the left and right images, everything is pretty distinctive.
[slide 2] But have a look at these stereo images - here, the visual textures are fairly
homogeneous, and it’s hard, for example, to take a little patch of leaves, like the one in the
upper left corner there, that | took out of this left image at the top, and figure out where that
same patch appears in the right image - it’s like doing a hard jigsaw puzzle. Yet we have no
problem fusing together stereo images like this and perceiving a vivid three-dimensional scene.

[01:34] [slide 3] The challenge of the stereo problem is emphasized even more in a type of
stereo image called a random-dot stereogram, which was first conceived by Bela Julesz in the
early 1970s. How is it constructed? The left image is just a pattern of randomly positioned black
and white dots. The right image is sort-of a copy of the left, except that parts of the pattern are
shifted to the left or right in the right image. For example, we might copy most of the left image
as it is, over to the right, but take a square region in the middle, like the area outlined in red,
and copy this region over to the right image at a different horizontal position, in this case a
position that’s further to the right. If we then view the stereogram in a way that forces our left
eye to view the left image and our right eye to view the right image, our visual system is able to
sense that there’s a region of the left image that’s shifted in the right, measure that shift, and
perceive a square surface in three dimensions that’s floating above the background. On the far
right, | display the left and right images superimposed in the same region, as | did before. The
region that’s shifted between the two images appears to move back and forth in this
demonstration, and the motion itself gives you a sense of a three-dimensional surface in front of
a background, but the percept of a surface at a different depth would be more potent if you
could view it stereoscopically.

[03:21] You can create random-dot stereograms portraying much more elaborate surfaces than
our simple square here. These kinds of stereograms are used extensively to study human
stereo vision. Why is that, and what do they tell us? First, they tell us that the stereo system can
function independently of other visual cues that we use to infer three-dimensional structure.
When we view the static left and right images stereoscopically, there is no motion, no shading,
no surfaces occluding other surfaces, no objects that we can recognize in the image. There’s
only stereo disparity, so our stereo system is operating on its own here. Second, they tell us

that we can match very simple features between the left and right images - there’s only dots
here, there’s no significant edges or objects, for example. And finally, they highlight the
ambiguity of the matching process. In principle, a black or white dot in the left image could
match with any dot in the right, yet somehow, we figure out the correct correspondence
between dots in the left and dots in the right. How do we do that?

[04:40] [slide 4] We need to be able to identify constraints on the matching process that allow
us to narrow down the possible ways that features could be matched up, and build these
constraints into an algorithm to solve the correspondence problem. What kind of constraints
could we consider here? Here are four that are commonly used in stereo correspondence
algorithms - uniqueness, similarity, continuity, and a constraint that goes by the peculiar name
of the epipolar constraint. What is the meaning of these constraints? Let’s start with uniqueness
- in general, each feature in the left image should match up with only one feature in the right
image, and vice versa. In our random-dot stereogram, for example, we don’t need to consider
the possibility that a single dot in the left image could be matched with multiple dots in the right.
Second is the similarity constraint - a particular feature in the scene, like the border of an object,
is likely to appear roughly the same from the viewpoints of the left and right eyes. If our object
border, for example, is oriented vertically in the left image and there’s a high-contrast sharp
change of intensity from green to red across the border, we should try to match it up with a
high-contrast vertical edge in the right image that goes from green to red across the border.

[06:14] What about continuity? This constraint is used in many ways, but the essence of it is
that features that are nearby in the image will tend to have similar disparities. Most of the image
consists of smooth, continuous surfaces whose depth varies slowly from one location to the
next. This is not true everywhere - you can have an object border, for example, with a sharp
change in depth across the border, like the border of the square in the random-dot stereogram
that we viewed earlier. But for most of the image, the stereo disparities at nearby locations are
similar, as you’d expect from a smooth, continuous surface.

[06:59] Finally, what about the epipolar constraint? The simple version is that, our eyes are
separated horizontally, so you might figure that the disparity in position of features in the left
and right eye is mostly horizontal. This means that if we have a feature in the left image, like the
left border of the sculpture in front here, and we’re looking for a match in the right image, we
only need to search along the same horizontal line, figuring that matching features will have
similar vertical coordinates. This is true for the simple geometry that we assumed at the end of
the last video, where the cameras were facing forward with their optical axes in parallel, but this
isn’t true in general.

[07:51] [slide 5] In this diagram, imagine there’s a point P out in space that projects onto the left
image at a particular location labeled p, in the blue left view here. If all we know is where P
appears in one image, it could actually be located anywhere in space along the line that
connects p, and P. The points labeled P,, P,, and P, are three examples of where this point
could be located in space. For each possible location along this line, we can ask, where would it

appear in the right image? The right view in this figure shows you the possible places where
that point could appear, and they all lie along this line shown in red, which is referred to as the
epipolar line. And when we’re looking for a feature in the right image that matches up with p, in
the left, we should really be searching along this red line, not along a horizontal line that’s at the
same vertical height. [slide 6] In computer stereo systems, the position and orientation of the
stereo cameras is generally known, and with this knowledge, we can transform the stereo
images in a way that corresponding features in the left and right images occur on the same
horizontal lines. In this example here, if we really had the geometry indicated by the gray planes
here, that's where the cameras are looking and oriented, the corresponding lines would actually
be oblique like they’re shown at the top here. But if we know the stereo geometry of the
cameras, then we can transform those images so that they would mimic what we would see if
we had a simpler geometry where in this case here, corresponding features are on the same
horizontal lines. This process is referred to as stereo camera calibration, and it greatly simplifies
the solution to the stereo correspondence problem. In your work on stereo, you'll just assume
the simple viewing geometry that’s portrayed in the yellow images here.

[10:30] [slide 7] So now, how can we solve the stereo correspondence problem? I’'m going to
demonstrate one general approach, and it should remind you of the fingerprint identification
problem that you’re working on in Assignment 1. The basic idea is to walk through the left
image in a systematic way, row by row, considering small patches of the image, and for each
patch, we’ll jump to the same location in the right image and look for a similar looking patch,
along the same horizontal line. For example, suppose we’re considering this patch that’s lower
down in the image, on the wine bottle here that’'s centered at the location of this green dot.
What we’re going to do is go over to the right image and then start searching along the
horizontal line - we’re not going to search along the entire horizontal row of the image, but
within a neighborhood, we’ll look at patches centered on each location around that
neighborhood, and try to determine which patch actually most closely resembles the particular
patch that we’re looking for on the left. How will we compare two patches on the left and right?
We might measure the difference between the left patch and all the potential right patches it
could match to, and select the one with the least difference. This should definitely remind you of
the fingerprint problem - we’re going to use that same measure of the sum of absolute
differences between the pattern of intensities in the two patches. We could also measure
instead, how similar the two patches are, and select the one that’s the most similar. For this
we’ll use a measure of similarity referred to as normalized correlation, which I'll describe in a
moment.

[12:37] [MATLAB demo] Right now, I'm going to go to MATLAB and just demonstrate the
process a little more directly. So here, I'm imagining just a snippet of the process, where I've got
my particular patch in the left image, centered on this green dot and I’'m going to try to look for a
match on the right. I'm going to consider first the same location, and notice that the green dot
here isn’t in the same place on the wine bottle, because the wine bottle is shifted in the right
image relative to the left. Every time | push this next button here, I'm going to consider a patch

in the right image at a different location, and compute both how different it is from the left patch,
and how similar it is, using normalized correlation, and I’'m going to plot that value on the graphs
at the bottom. So let me just start. I'm also, by the way, printing out what the disparity is
between the position of the patch on the left and the position of the patch that I'm considering
on the right. Right now this is a patch that’s shifted way over to the left -45 pixels to the left, and
I’m comparing those two patches and showing how they’re different and how they’re similar. Let
me just continue, I'm moving the patch over, bit by bit, and plotting in each case, how different
and similar they are. And I'll keep doing this until | get to a patch that’s shifted much more to the
right in the right image, such as that. So which of these patches was actually the best match to
my patch on the left? None of them that | checked were actually a perfect match, but the best
one is the patch that has the least difference or the largest similarity. The shift occurs in the
same place in both, it’s either the minimum of this plot here or the maximum of the similarity
plot. ’'m going to start the simulation again, and this time, stop when | get to that patch that’s
really the best match. Here we go - that's where we are, and the two patches do look fairly
similar, and at this point, I'm at a disparity of -10, which means that the position of the patch in
the right image is shifted by 10 pixels to the left, relative to that patch on the left. And that
disparity of -10, that’s the stereo disparity that I'll assign to this location from the left here, in a
global disparity map, for that particular location. And later | can use that information to figure out
what'’s the depth of that particular location in the scene.

[16:16] [slide 8] Let’'s go back to the slides. The question here is, how do we actually measure
these two quantities, the sum of absolute differences and normalized correlation? [slide 9] In
each case, you're given patches from the left and right images to compare, and I'll refer to
those as p,« and p,, - here | just displayed tiny 4x4 patches. For the sum of absolute
differences, we first compute the element-by-element difference between the intensities at
corresponding locations in the two patches, and then take the absolute value of the differences,
because we care about how large the difference is, not whether it's positive or negative. Finally,
we add up all the differences over the patch, and that’'s a measure of how different the patches
are. Optionally, we could divide by the number of pixels in the patch in order to compute the
average difference between the intensities at corresponding locations.

[17:34] Normalized correlation is a measure of similarity between the patterns of intensity
variation within the two patches - intuitively, we're asking how well correlated is the pattern of
ups and downs of intensity within the patches? I'll first describe briefly, what’s in the
mathematical expression here, and then illustrate what it means with pictures. The two
quantities p. and p,,, with the bars on top are the average, or mean intensity within each
patch, so the first thing we do is subtract the average from the intensities within each patch.
Then we multiply the two results together in an element-by-element way. The two quantities in
the denominator denoted by sigma, are the standard deviations of the intensities within each
patch - this is a measure of the spread of the intensities, and we’re multiplying those two
quantities together. Finally, this overall measure is added up over all the locations within the
patch, just like in the sum of absolute differences. To understand the computation of normalized

correlation in more detail, we’ll consider one-dimensional strips of intensity through two
patches.

[19:04] [slide 10] Here, the blue curve is a strip through a patch in the left image, and it’s the
same in the left and right graphs that I've shown here. The red and green curves are intensity
profiles for two different patches in the right image. What we’re asking is, how well correlated is
the intensity variation in the left patch, shown in blue, with the pattern of intensity variation in the
right patch, shown in either red or green? Our first step is to calculate the mean intensity in
each patch and subtract that from the intensities in the patch.

[19:50] [slide 11] In that case, it doesn’t actually change the shape of those curves, it just
centers them around O - the zero line here is shown in black. That’s the first step. The next
steps are to multiply these left and right profiles in an element-by-element way, and divide by
the product of the standard deviations of the intensities in each patch. Remember that we're
measuring how similar the two patches are, so we ultimately want to get a larger value for
patterns that are more similar. And you can get a sense here that probably it's the example
shown in red that’s going to hopefully end up being more similar than the pattern that’s shown
in green. When we multiply the two curves element-by-element, if they’re both positive, or
they’re both negative in the same place, we’ll get a positive product, so it contributes in a
positive way to the similarity. For the blue and red curves, they’re positive and negative, for the
most part, in the same places, so the element-by-element products shown here on the left, are
all positive. But if one curve is positive in a place where the other is negative, the product is
negative, as it is in many places when we multiply the blue and green curves. The final
measure of correlation is the sum of these results so it's the sum of all the values in these two
curves, and you can see it’'s a high positive value in the case of the red patch, and a small
negative value for the case of the green example. So we would say that this is definitely more
similar than the pattern shown in green - the numbers here fit our intuition about that.

[22:08] [slide 12] Now, let's summarize this overall strategy for solving the stereo
correspondence problem, which is often described as a region-based stereo matching algorithm
in this case. You'll be exploring, and enhancing, an implementation of this algorithm in the
second assignment. Overall, we’'ll systematically step through all the patches in the left image
and for each patch, we'll find the best match in the right and record the disparity in position
between the left patch and its best match in the right. So we have a nested for loop here - for
each row, we'll visit each column, and let p,., be a square patch centered on this row and
column in the left image. As we check patches in the right image, we want to keep track of the
best match score we’ve seen so far, and where we got that best score. In this version of the
algorithm, we’re going to use the sum of absolute differences as our match score, so a better
score is a smaller value. So we can initialize the best score to a very large number, like infinity -
we can actually assign values to infinity in MATLAB - and we’ll initialize our best disparity. Then
we consider every possible patch in the right image over some range of disparities, I'll say from
-d to +d and we extract the right patch for each of those disparities. We compute the

range range’

match score between the left and right patches, and if the match score is better, if it's less than
than the best that we've seen so far, then we’ll assign our best score to the new score we just
measured, and record the disparity at this place where we’ve got a better score. In the end,
after we've looked at all the patches, we’ll record that best disparity in a global disparity map,
for this particular row and column. If we use normalized correlation instead, to measure how
similar are the left and right patches, we just need to make a few minor adjustments, because
better scores here are now larger values. We could initialize the best match score to negative
infinity, measure normalized correlation, and as we go, in the case of normalized correlation if
we find a higher value here instead of a lower value, then we’ll record that and the disparity.
The big question now is, how did we actually use the four constraints that we described earlier:
uniqueness, similarity, continuity, and the epipolar constraint. I’'m going to let you think about
this yourself and express your thoughts in the assessment for this topic.

[25:33] [slide 13] Let’s look at some results - here are some results of applying this strategy to
the analysis of the stereo images of our eclectic scene of objects. On the bottom, the left picture
shows the computed disparity map for the scene, where disparities corresponding to depths
that are closer to the camera are shown as darker. This dark blob in the center here, this is the
Arizona can that’s out in front. There’s a medium gray region here, for example, that
corresponds to the clock, and there’s a painting here at the way back, and the depths there are
shown in this bright area, because they’re the furthest away in the depth map. On the right, |
just superimposed the zero-crossings that are obtained from convolving the images with the
Laplacian of Gaussian operator, and it's mostly to give you a sense of where the edges of
things actually are in the scene, so that you can compare the depths that were obtained to the
actual positions of objects in the scene. For example, we can see the borders of the Arizona
can and how that compares to that dark region out in front.

[27:00] [slide 14] I'd like to finish by just pointing out some of the unavoidable challenges for
stereo matching. In the case of the lunchbox at the top, the bright highlights due to the reflection
of a light source, they can appear in different places - they’re on the far right end of the top of
the lunchbox in one image, and on the left in the other image, so that definitely messes up the
matching of patches in those regions. As the checkerboard suggests, there may not be one
patch in the right image that’s the best match - there might be lots of patches that all look the
same. And the example at the bottom shows that if a surface is slanted in depth, the patches
may be compressed in one image relative to the other - this elongated box here appears much
shorter in the right eye, so the patches in that region won'’t line up so well in the left and right
images. And finally, when you have objects in the scene that are hiding other objects from view,
it might be that there are parts of the image that one eye sees that don’t even appear at all in
the other eye. That’s the case in this little snippet of our images that we had before, where the
left eye sees the Leonardo here, but the right eye doesn’t see that at all. What’s going on here
is described in this diagram that’s a bird’s eye view of the eyes looking at a surface in the
background with a surface floating out in front here that’s hiding parts of it from view. So the left
eye, for example, can see this patch here, but not that patch that’s hidden from view, or the right

eye can’t see that particular patch. This also creates a challenge, in fact all of these factors
create a challenge, both for computer vision systems and for biological vision systems.

In our next class, we’ll examine human stereo vision more closely, and explore a different
strategy for stereo correspondence that captures some of the interesting aspects of human
vision.

