
A Calculus for Link-time Compilation

Elena Machkasova1 and Franklyn A. Turbak2?

1 elenam@bu.edu, Boston University, Boston MA 02215, USA
2 fturbak@wellesley.edu, Wellesley College, Wellesley MA 02481, USA

Abstract. We present a module calculus for studying a simple model of
link-time compilation. The calculus is stratified into a term calculus, a
core module calculus, and a linking calculus. At each level, we show that
the calculus enjoys a computational soundness property: if two terms are
equivalent in the calculus, then they have the same outcome in a small-
step operational semantics. This implies that any module transformation
justified by the calculus is meaning preserving. This result is interesting
because recursive module bindings thwart confluence at two levels of our
calculus, and prohibit application of the traditional technique for show-
ing computational soundness, which requires confluence. We introduce a
new technique, based on properties we call lift and project, that uses a
weaker notion of confluence with respect to evaluation to establish com-
putational soundness for our module calculus. We also introduce the weak

distributivity property for a transformation T operating on modules D1

and D2 linked by ⊕: T (D1 ⊕D2) = T (T (D1) ⊕ T (D2)). We argue that
this property finds promising candidates for link-time optimizations.

1 Introduction

We present a module calculus for a purely functional language that is a tool for
exploring the design space for a simple form of link-time compilation. Link-time
compilation lies in the relatively unexplored expanse between whole-program
compilation, in which the entire source program is compiled to an executable,
and separate compilation, in which source program modules are independently
compiled into fragments, which are later linked to form an executable. In the
link-time compilation model (1) source program modules are first partially com-
piled into intermediate language modules; (2) intermediate modules are further
compiled when they are combined, taking advantage of usage information ex-
posed by the combination; and (3) when all intermediate modules have been
combined into a final closed module, it is translated into an executable.

Link-time compilation can potentially provide more reusability than whole-
program compilation and more efficiency than separate compilation. While sep-
arate compilation offers well-known benefits for program development and code
reuse, a drawback is that the compilation of one module cannot take advantage
of usage information in the modules with which it is later linked. In contrast,

? Both authors were supported by NSF grant EIA–9806747. This work was conducted
as part of the Church Project (http://www.cs.bu.edu/groups/church/).

link-time compilation can use this information to perform optimizations and
choose specialized data representations more efficient than the usual uniform
representations for data passed across module boundaries.

In this paper we take some first steps towards formalizing link-time com-
pilation. There are three main contributions of this work. First, we present a
stratified untyped call-by-value module calculus that at every level satisfies a
computational soundness property1: if two expressions can be shown equivalent
via calculus steps, then their outcomes relative to a small-step operational se-
mantics will be observably equal. This implies that any transformation express-
ible as a sequence of calculus steps (such as constant propagation and folding,
function inlining, and many others) is meaning preserving.

Second, our technique for proving soundness is interesting in its own right.
Traditional techniques for showing this property (e.g., [Plo75,AF97]) require the
language to be confluent, but the recursive nature of module bindings destroys
confluence. In order to show that our module calculus has soundness, we intro-
duce a new technique for proving this property based on a weaker notion we
call confluence with respect to evaluation. We replace the confluence and stan-
dardization of the traditional technique for proving soundness with symmetric
properties we call lift and project.

Third, we sketch a simple model of link-time compilation and introduce the
weak distributivity property as one way to find candidates for link-time opti-
mizations. We show that module transformations satisfying certain conditions
are weakly distributive, and demonstrate these conditions for some examples of
meaning preserving transformations.

Our work follows a long tradition of using untyped calculi for reasoning about
programming languages features: e.g., call-by-name vs. call-by-value semantics
[Plo75], call-by-need semantics [AFM+95,AF97], state and control [FH92], and
sharing and cycles [AK97,AB97]. Our notion of confluence with respect to eval-
uation avoids cyclic substitutions in the operational semantics, and so is related
to the acyclic substitution restriction of Ariola and Klop [AK97].

This work is part of a renewed interest in linking issues that was inspired by
Cardelli’s call to arms [Car97]. Recent work on module systems and linking has
focused on such issues as: sophisticated type systems for modules [HL94,Ler94];
the expressiveness of modules systems (e.g., handling features like recursive mod-
ules [FF98,CHP97,AZ99], inheritance and mixins [DS96,AZ99] and dynamic
linking [FF98,WV99]); binary compatibility in the context of program modifi-
cations [SA93,DEW99]; and modularizing module systems [Ler96,AZ99]. There
has been relatively little focus on issues related to link-time optimization; ex-
ceptions are [Fer95] and recent work on just-in-time compilers (e.g, [PC97]).

Our work stands out from other work on modules in two important respects.
First, we partition the reduction relation of the calculus (→) into evaluation
(sometimes called standard) steps (⇒) that define a small-step operational se-
mantics and non-evaluation (non-standard) steps (↪→). While this partitioning is
common in the calculus world (e.g., [Plo75,FH92,AF97]), it is rare in the module

1 We will often abbreviate the name of this property as “soundness”.

world. Typical work on modules (e.g., [Car97,AZ99]) gives only an operational
semantics for modules. Yet in the context of link-time compilation, the notion
of reduction in a calculus is essential for justifying meaning preserving program
transformations. Without non-evaluation steps, even simple transformations like
transforming [F 7→ λx.(1 + 2)] to [F 7→ λx.3] or [A 7→ 4, F 7→ λx.x + A] to
[A 7→ 4, F 7→ λx.x + 4] are difficult to prove meaning preserving.

Second, unlike most recent work on modules (with the notable exception of
[WV99]), our work considers only an untyped module language. There are sev-
eral reasons for this. First, types are orthogonal to our focus on computational
soundness and weak distributivity; types would only complicate the presentation.
Second, introducing types often requires imposing restrictions that we would like
to avoid. For example, to add types to their system, [AZ99] need to impose sev-
eral restrictions on their untyped language: no components with recursive types,
and no modules as components to other modules. Finally, we do not yet have
anything new to say in the type dimension. We believe that it is straightforward
to adapt an existing simple module type system (e.g., [Car97,FF98,AZ99]) to
our calculus. On the other hand, we think that enriching our module system
with polymorphic types is a very interesting avenue for future exploration.

Due to space limitations, our presentation is necessarily dense and tele-
graphic. Please see the companion technical report [MT00] for a more detailed
exposition with additional explanatory text, more examples, and proofs.

2 The Module Calculus

In this section, we present a stratified calculus with three levels: a term calculus
T , a core module calculus C, and a full module calculus F . The three calculi
are summarized in Fig. 1. Let X range over {T , C,F}. The definition for each
calculus X consists of the following:

– The syntax for calculus terms TermX and for general one-hole contexts
ContextX . If X ∈ ContextX , then X{Y } denotes the result of filling the
hole of X with a term Y . Due to the hierarchical structure of our module
calculus, Y is not necessarily a term of X . For instance, in our hierarchy T
contexts are filled with T terms; C contexts are filled with T terms; and F
contexts are filled with either C or F terms. We assume that the notation
X{Y } is only applied to such X and Y that the result of the filling is a well-
formed term in TermX . For instance, the notation D{M} is defined only if
the resulting module is well-defined element of TermC .

– A small-step operational semantics of X defined via an evaluation step rela-
tion ⇒X , and a complementary definition of a non-evaluation step relation
↪→X . For each of the three calculi we define a one-step calculus relation

→X

def
=⇒X ∪ ↪→X .2 The relation ⇒X is often defined in terms of an evalua-

tion context EvalContextX ⊆ ContextX . A term Y is a →X -normal-form

2 Alternatively we could have defined the rules for →X explicitly and then set ↪→X to
be →X \ ⇒X . However, giving explicit rules for ↪→X clarifies the presentation.

Syntax for the Term Calculus (T):

c ∈ Const = constant values x ∈ Variable = term variables

v ∈ Visible = external labels h ∈ Hidden = internal labels

k, l ∈ Label = Visible ∪Hidden
L, M, N ∈ TermT ::= c | x | l | (λx.M) |M1 @ M2 |M1 ôp M2

C ∈ ContextT ::= 2 | (λx.C) | C @ M |M @ C | C ôp M |M ôp C

V ∈ ValueT ::= c | x | λx.M

Notion of Reduction on Terms:
(λx.M @ V) T M [x := V] (β)

c1 ôp c2 T c, where c = δ(ôp, c1, c2) (δ)

Evaluation and Non-evaluation Steps:

E ∈ EvalContextT ::= 2 | E @ M | (λx.M) @ E | E ôp M | c ôp E

E{R} ⇒T E{Q}, where R T Q, (term-ev)

E{R} ↪→T E{Q}, where R T Q. (term-nev)

Syntax for the Core Module Calculus (C):

D ∈ TermC ::= [l1 7→M1, . . . , ln 7→Mn] (abbreviated [li
n
7→
i=1

Mi]),

provided li = lj implies i = j, FV (D) = ∅, and Imports(D) ∩Hidden = ∅.

D ∈ ContextC ::= [li
k−1
7→
i=1

Mi, lk 7→ C, lj
n
7→

j=k+1
Mj]

Projection Notation: [li
n
7→
i=1

Mi] ↓ lj = Mj , if 1 ≤ j ≤ n, and otherwise undefined.

Evaluation and Non-evaluation Steps:

G ∈ EvalContextC ::= [li
k−1
7→
i=1

Mi, lk = E, lj
n
7→

j=k+1
Mj]

G{R} ⇒C G{Q}, where R T Q. (comp-ev)
G{l} ⇒C G{V }, where G{l} ↓ l = V . (subst-ev)

[li
n
7→
i=1

Mi, hj
m
7→
j=1

Vj] ⇒C [li
n
7→
i=1

Mi], where ∀1≤i≤m.hi 6∈ ∪
n
j=1FL(Mj) (GC)

G{R} ↪→C G{Q}, where R T Q. (comp-nev)

G{l} ↪→C G{V }, where G{l} ↓ l = V . (subst-nev)

Syntax for the Full Module Calculus (F):

F ∈ TermF ::= D | I | F1 ⊕ F2 | F [l← l′] | let I = F1 in F2

F ∈ ContextF ::= 2 | F⊕ F | F ⊕ F | F[l← l′] | let I = F in F | let I = F in F

Evaluation and Non-evaluation Steps:

D ⇒F D′, where D ⇒C D′ (mod-ev)

F{[ki
n
7→
i=1

Mi]⊕ [lj
m
7→
j=1

Nj]} ⇒F F{[ki
n
7→
i=1

Mi, lj
m
7→
j=1

Nj]}, (link)

where (∪n
i=1ki) ∩ (∪m

j=1lj) = ∅
F{D[l← k]} ⇒F F{D[l := k]}, (rename)

where l ∈ BL(D) implies k 6∈ BL(D),
l ∈ Hidden implies k ∈ Hidden, and
k ∈ Hidden implies l 6∈ Imports(D).

F{let I = F1 in F2} ⇒F F{F1[I := F2]}, (let)

F{D} ↪→F F{D′}, where D →C D′ (mod-nev)
and F 6= 2 or D ↪→C D′

Fig. 1. The three levels of the module calculus.

(NF) if there is no term N s.t. M →X N , a ⇒X -NF is defined analogously.
For each calculus X , there is a classification function ClX that maps each
term to a “class” token that describes its state w.r.t. evaluation. The classes
for evaluatable terms must be disjoint from those in⇒X -NF. Also associated
with each calculus X is a set ValueX of values that is the union of one or
more classes of ⇒X -NFs. The function OutcomeX of a term is defined to be
the class of its ⇒-normal form or a symbol ⊥ if the term diverges.

We use the following notations and conventions. If X ranges over EvalContextX ,
then X ranges over ContextX \ EvalContextX (i.e. the set of non-evaluation
contexts). For pairs of rules such as (comp-ev) and (comp-nev), which only dif-
fer by the use of an evaluation versus a non-evaluation context, we introduce a
notation for the combined calculus rule. For instance, we say that D →C D′ by
the rule (comp) if either D ⇒C D′ by (comp-ev) or D ↪→C D′ by (comp-nev). If
→ is a one-step relation, then →∗ denotes its reflexive transitive closure, and ↔
denotes its reflexive, symmetric, and transitive closure.

The following properties of calculi are important in the sequel.

Definition 1 (Confluence). The → relation is confluent if M1 →
∗ M2 and

M1 →
∗ M3 implies the existence of M4 s.t. M2 →

∗ M4, M3 →
∗ M4. A calculus

X has confluence if →X is confluent.

Definition 2 (Standardization). A calculus X has the standardization prop-

erty if for any sequence M1 →
∗
X

M2 there exists M3 s.t. M1 ⇒
∗

X M3↪→
∗
XM2.

2.1 Term calculus (T)

The module calculus is built on top of a term calculus T , a typical call-by-value
λ-calculus that includes constants (which we assume include integers) and binary
operators (we assume ôp includes standard integer operations). For interfacing
with the module language in which it is embedded, the term syntax also includes
two disjoint classes of labels whose union, Label, is itself disjoint from Variable.

We adopt the convention that all λ-bound variables in a term must be dis-
tinct. The free variables of a term M , written FV (M), are defined as usual
(recall that variables are distinct from labels). The set of labels appearing in
a term M is written FL(M); because labels cannot be λ-bound, they always
appear “free”. The result of a capture-avoiding substitution of M ′ for x in M is
written M [x := M ′]. In addition to using α-renaming to avoid variable capture
during substitution, it may be necessary to α-rename the result of substitution
to maintain the distinct variable naming invariant. The result of substituting a
term M ′ for a label l in M is written M [l := M ′].

Both⇒T and ↪→T are defined via a redex/contractum relation T specified
by a call-by-value β rule and a δ rule (unspecified) for binary functions on
constants. Terms in dom(T) are called term redexes. The relations ⇒T and
↪→T are contextual closures of T with respect to an evaluation context E and
a non-evaluation context E. It is easy to see that →T (defined as ⇒T ∪ ↪→T) is
the contextual closure of T with respect to a general context C.

A term M can be uniquely classified with respect to evaluation via ClT (M),
defined as:

const(c) if M = c
var if M = x

abs if M = λx.N
stuck(l) if M = E{l}

evaluatable if M = E{R}
error otherwise

It turns out that an evaluatable term M can be uniquely parsed into E and R
such that M = E{R}, so ⇒T is deterministic (i.e., it is a partial function rather
than a relation). The partial function EvalT (M) is defined as the ⇒T -NF of M
if it exists; otherwise, M is said to diverge. The total function OutcomeT (M) is
defined as ClT (EvalT (M)) if EvalT (M) is defined, and ⊥ if M diverges. Using
classical techniques [Plo75,Bar84], it is straightforward to prove that →T is
confluent, and T has the standardization property.

2.2 Core Module Calculus (C)

In our module calculus, modules are unordered collections of labeled terms.
There are two disjoint classes of labels: visible and hidden. Visible labels name
components to be exported to other modules, and also name import sites within
a component, while hidden labels name components that can only be referenced
within the module itself. (This distinction is similar to distinction between de-
ferred variables and expression names on one hand and local variables on the
other in [AZ99]). Intuitively, a module is a fragment of a recursively scoped
record that can be dynamically constructed by linking, where visible labels serve
to “wire” the definitions in one module to the uses in another.

A module binding is written l 7→ M . A module is a bracketed set of such
bindings in which the labels of any two bindings are distinct. Note that a hole
in a module context D is filled with a T -term rather than another module. The
notation li

n
7→
i=1

Mi stands for the bindings l1 7→ M1 . . . ln 7→ Mn, and D ↓ l

extracts the component M bound to l in D (if it exists).

Suppose that D = [li
n
7→
i=1

Mi]. The free variables of D are FV (D) =

∪n
i=1FV (Mi). The substitution D[l := k] yields [l′i

n
7→
i=1

Mi[l := k]], where l′i = k

if li = l and l′i = li otherwise. The set of bound labels in D is defined as
BL(D) = ∪n

i=1li, while the set of free labels is FL(D) = (∪n
i=1FL(Mi))/BL(D).

The exported labels of D are those that are both bound and visible (Exports(D) =
BL(D)∩Visible), while the imported labels are just the free ones (Imports(D) =
FL(D)). In order to be well-formed, a module D must satisfy three conditions:
(1) all its bound labels must be distinct; (2) it must not import any hidden
labels; and (3) it must not contain any free variables (such variables would nec-
essarily be unbound). In a well-formed module, the hidden labels are necessarily
bound, so we define Hid(D) = BL(D) ∩Hidden.

The evaluation relation ⇒C is defined using a module evaluation context G

which lifts term-level evaluation context E to the module level. The three rules
of ⇒C allow the following reductions: (comp-ev) lifts ⇒T to the module level;
(subst-ev) substitutes a labeled value for a label occurrence in the module; (GC)

garbage collects hidden values not referenced elsewhere in the module. Unlike
⇒T , ⇒C is not deterministic, because it can perform an evaluation step on any
component. Nevertheless, ⇒C is confluent. The complementary relation ↪→C has
two rules (comp-nev) and (subst-nev) which differ from their evaluation analogs
by using a non-evaluation context in place of an evaluation context. Note that the
(GC) rule does not have a non-evaluation counterpart; i.e., all (GC)-reductions
are evaluation steps.

Let us consider some examples of module reductions.3 Any one-step reduc-
tion on a term component can be lifted to the module via the (comp) rule:
[F 7→ λx.1 + 2] ↪→C [F 7→ =λx.3]. This is a non-evaluation step, since the redex
occurs under a λ. As an example of (subst), consider [A 7→ 4, F 7→ A + 3] ⇒C

[A 7→ 4, F 7→ 4 + 3]. Here A in the second term appears in an evaluation con-
text. Note that a value may be substituted into itself: [F 7→ λx.F] ↪→C [F 7→
λx.(λx1.F)] ↪→C [F 7→ λx.(λx1.(λx2.(λx3.F)))] (where α-renaming preserves the
distinct variable invariant). This is a non-evaluation step, since F appears under
a λ. The (GC) rule garbage collects hidden values not referenced elsewhere in
the module. Consider:

[P 7→ λw.g @ (w + 1), f 7→ λx.h, g 7→ λy.y ∗ 2, h 7→ λz.f]
⇒C [P 7→ λw.g @ (w + 1), g 7→ λy.y ∗ 2]

The mutually recursive bindings for f and h can be removed because all refer-
ences to these hidden labels occur inside of the values named by these labels.
However, g cannot be removed, since an exported term references it.

It turns out that C has the standardization property. But interestingly, even
though ⇒C is confluent, →C is not confluent, due to the possibility of mutually
recursive (subst) redexes that appear under a λ and therefore not in an evaluation
context. Consider an example due to [AK97]: D0 = [F 7→ λx.G,G 7→ λy.F].
Then D0 ↪→C [F 7→ λx.λy′.F ,G 7→ λy.F] = D1 and D0 ↪→C [F 7→ λx.G,G 7→
λy.λx′.G] = D2. D1 (resp. D2) has an even (resp. odd) number of λs for F and
an odd (resp. even) number for G, and in every reduction sequence starting with
D1 (resp. D2), all terms will have this property. Clearly, reduction sequences
starting at D1 and D2 can never meet at a common term.

The confluence of⇒C gives rise to a partial function EvalC(D) that, when de-
fined, returns a module whose components are all⇒T -normal forms. The classifi-
cation notion also lifts to the module level: ClC(D) = [li

n
7→
i=1

ClT (Mi)], where D =

[li
n
7→
i=1

Mi]. As in the term calculus, OutcomeC(D) = ClC(EvalC(D)) if EvalC(D)

exists, and ⊥ otherwise. We say that D = [li
n
7→
i=1

Vi] is a module value (D ∈

ValueC) if Hid(D) = ∅ and Vi ∈ ValueT for all 1 ≤ i ≤ n.

2.3 Full Module Calculus (F)

The full module calculus extends the core module calculus with three module
operators: linking, renaming, and binding. Intuitively, the linking of modules D1

3 In examples, we adopt the convention that visible labels have uppercase names while
hidden labels have lowercase names.

and D2, written D1 ⊕ D2, takes the union of their bindings. To avoid naming
conflicts between both visible and hidden labels, BL(D1) and BL(D2) must be
disjoint. The fact that the import labels of a well-formed module may not be hid-
den prevents the components of one module from accessing hidden components
of another when they are linked.

The renaming operator renames any module label (visible or hidden, import
or export). Renaming import and export labels is the way to connect an exported
component of one module to an import site in another. Renaming a visible
label to a fresh hidden label hides a component; a user-level “hiding” operator
could be provided as syntactic sugar for such renaming. Finally, renaming of
hidden variables to other hidden variables is necessary to guarantee that hidden
variables are disjoint when they are linked. The side conditions on renaming
prevents certain undesirable scenarios: (1) attempting to rename one bound label
to another (causing a name clash); (2) renaming a hidden variable to a visible
one, thereby exposing it; and (3) renaming a (necessarily visible) import to a
hidden label, thereby making the module ill-formed.

The binding operator let I = F1 in F2 names the (result of evaluating the)
definition term F1 and uses the name within the body term F2. This models
situations in which the same module is used multiple times in different contexts.

The disjoint hidden label requirement for ⊕ simplifies reasoning about the
calculus, but is severe from the perspective of a user, who should not be able
to predict the names of the hidden labels of any module. We address this prob-
lem by supplying a user-level linking operator ⊕ that can be defined in terms
of the primitive linking operator ⊕ and renaming, as follows. Suppose that
F1 = [vi

n17→
i=1

Mi, hj
m17→
j=1

Nj] and F2 = [v′i
m27→
i=1

M ′
i , h

′
j

n27→
j=1

N ′
j] . Then F1⊕F2 is de-

fined as:

F1[h1 ← h′′1 , . . . , hn1
← hn1

′′] ⊕ F2[h
′
1 ← hn1+1

′′, . . . , h′n2
← hn1+n2

′′],

where
(

(
⋃n1

i=1
hi) ∪ (

⋃n2

j=1
hj

′)
)

⋂

(

⋃n1+n2

k=1
hk

′′

)

= ∅

The hidden labels of F1 and F2 are renamed to fresh hidden labels before the
modules are linked to avoid collisions. The renaming performed by ⊕ is is similar
to the α-renaming required in other module calculi linking operations (e.g., in
[FF98] when rewriting the compound linking form to the unit module form).

The definition of→F lifts core module reduction steps to the module expres-
sion level and adds evaluation rules for the link-level operators (link, rename, and
bind). The structure of ContextF allows the link-level operators to be evaluated
in any order. The lifted core module reduction steps are only considered eval-
uation steps if they are not surrounded by any link-level operators; this forces
all link-level steps to be performed first in a “link-time stage”, followed by a
“run-time stage” of core module steps.

The lack of confluence of →C is inherited by →F , but we are still able to
show that ⇒F is confluent and F has the standardization property. If F is
a link, rename, or bind term, we define ClF (F) to be linkable; otherwise we
define ClF (F) to be ClC(F) (in this case, F ∈ TermC). OutcomeF is defined
analogously with OutcomeC , and ValueF = ValueC .

3 Meaning Preservation

The calculus defined in the previous section allows us to reason about module
transformations. A transformation T of a calculus X is a relation T : X × X .
Even though T in general is not a function, we sometimes write Z = T(Y) if
(Y,Z) ∈ T. Below we define a notion of observational equivalence and, based on
it, a notion of a meaning preserving transformation.

Definition 3 (Observational Equivalence). Two terms Y and Z of a cal-
culus X ′ are observationally equivalent in a calculus X (written Y ∼=X Z) if for
all contexts X s.t. X{Y } and X{Z} are well-formed terms of X , X{Y } ⇒∗

X W
iff X{Z} ⇒∗

X W ′ where W and W ′ ∈ ValueX and ClX (W) = ClX (W ′).

In the definition, note that X may or may not be the same as X ′. As an
example, two core modules are observationally equivalent in F if in any full
module context F they evaluate to module values of the same class, as defined
above. For instance, consider the following modules: D1 = [F 7→ λx.x + a, a 7→
1 + 2], D′

1 = [F 7→ λx.x + 3, a 7→ 3], D2 = [S 7→ N1 + N2], and D′
2 = [S 7→

N2 + N1]. D1
∼=F D′

1 because the exported F behaves like an “add 3” function
for both modules in any context. Assuming that + is commutative, D2

∼=F D′
2

because they evaluate to the same module value when they are placed in a
context that supplies integer values for N1 and N2, and none of the two modules
evaluates to a module value if the context does not supply such values.

Definition 4 (Meaning Preservation). A transformation T of a calculus X ′

is meaning preserving in a calculus X if (Y,Z) ∈ T implies Y ∼=X Z.

For instance, the constant folding/propagation transformation CFP in C is
meaning preserving in F , as seen in the above example with D1 and D′

1. The
example with D2 and D′

2 illustrates that a transformation SPO that swaps the
operands of + in C is also meaning preserving in F .

3.1 Computational Soundness

Proving that a transformation is meaning preserving can be difficult and tedious
work. However, if T is a calculus-based transformation in X , i.e. Y ↔X Z for
all (Y,Z) ∈ T, then it is automatically meaning preserving in a calculus X ′

satisfying the conditions of Lemma 1 below.
A key notion for showing the meaning preservation of calculus-based trans-

formations is computational soundness:

Definition 5 (Computational Soundness). A calculus X is computationally
sound if M ↔X N implies OutcomeX (M) = OutcomeX (N), where M,N ∈
TermX .

It follows from computational soundness that if two terms are equivalent in
the calculus then they are observationally equivalent in an empty context. For
observationally equivalence to hold in all contexts requires embedding:

Definition 6 (Embedding). A relation →X ′ is embedded in a relation →X

(written →X ′�→X) if Y →X ′ Z implies that X{Y } →XX{Z} for any context
X s.t. X{Y } and X{Z} are well-formed terms of X .

As examples of embeddings, in our module calculus,→T �→C (because term
reductions can be performed in the bindings of a module) and→C�→F (because
core module reductions can be performed within a full module term). The self-
embedding →X�→X means that the relation →X is a congruence relative to
the one-holed contexts of X . For instance, →T and →F are both congruences
since they are embedded in themselves.

Together, computational soundness and embedding imply that calculus-based
transformations are meaning preserving.

Lemma 1. If a calculus X is sound and →X ′�→X , then any calculus-based
transformation T in X ′ is meaning preserving in X .

Proof. By Definition 6, Y ↔X ′ T(Y) implies that for any context X, X{Y }
↔XX{T(Y)}. Then OutcomeX (X{Y }) = OutcomeX (X{T(Y)}) by soundness of
X . By the definition of OutcomeX , X{Y } ⇒∗

X W iff X{T(Y)} ⇒∗

X W ′, where W
and W ′ ∈⇒X -NF and ClX (W) = ClX (W ′). Since ValueX respects the ordering
of ClX , W and W ′ are either both in or both not in ValueX . ut

The soundness of the call-by-name and call-by-value λ-calculi are a classic
result due to Plotkin [Plo75]. Since the reduction relations of these caculi are
congruences (i.e., are self-embedded), Lemma 1 implies that all calculus-based
transformations in these calculi are meaning preserving.

A main result of our work is that T , C, and F are all computationally sound.
Given the four embeddings for these calculi enumerated above, Lemma 1 implies
that calculus-based transformations are meaning preserving in each of the four
cases. Many classic program transformations (both at the term and at the mod-
ule level) fall into this category: e.g., constant folding and propagation, function
inlining, and simple forms of dead-code elimination that eliminate unused value
bindings. All of these (and any combinations thereof) can easily be shown to be
meaning preserving because all are justified by simple calculus steps.

We emphasize that there are numerous common transformations that are not
calculus-based and so their meaning preservation cannot be shown via this tech-
nique. The operand-swapping SPO transformation introduced above is in this
category. Note that OutcomeC(D2) = [S 7→ stuck(N1)] and OutcomeC(D

′
2) =

[S 7→ stuck(N2)], underscoring that SPO cannot possibly be expressed via calcu-
lus steps. Global transformations like closure conversion, assignment conversion,
uncurrying, etc., are other examples of non-calculus-based transformations.

3.2 A Novel Technique for Proving Soundness

As in Plotkin’s approach, we show soundness of the module calculi in order to
prove that calculus-based transformations are meaning preserving. However, we
formulate and prove much more general conditions for soundness that do not

depend on the particulars of the module calculus or of the definition of a pro-
gram outcome. We also extend traditionally used definitions to a hierarchy of
calculi, allowing terms of one calculus to fill in contexts of another (see Defini-
tion 3 above). Our discussion is independent of the particulars of a calculus. The
notations M,N for terms and C for contexts are used below for clarity (since
these notations are more traditional); note that they are independent from the
same notations used in the term calculus T .

Traditional proofs of computational soundness depend on confluence of reduc-
tion in the calculus and on standardization, as well as on the following property,
which is often not articulated, but plays a critical role in soundness proofs:

Definition 7 (Class Preservation). Calculus X has the class preservation
property if M ↪→X N implies ClX (M) = ClX (N), where M,N ∈ TermX .

Below we present a traditional proof of computational soundness that gen-
eralizes Plotkin’s approach.

Theorem 1 (Soundness of a Confluent Calculus). Confluence, standard-
ization, and class preservation imply soundness.

Proof. The diagram of the proof is shown in Fig. 2.4 Assume that M ↔X N
and that M ⇒∗ M ′ = Eval(M). By confluence there exists L s.t. M ′ →∗ L,
N →∗ L. Since M ′ is a normal form w.r.t. ⇒, there can not be an evaluation
sequence starting at M ′, so M ′↪→∗L. By standardization, N →∗ L implies that
there is N ′ s.t. N ⇒∗ N ′↪→∗L. Since M ′, L, and N ′ are connected only by ↪→,
by class preservation, Cl(M ′) = Cl(L) = Cl(N ′), and since N ′ is of the same
class as M ′, it must also be a normal form w.r.t. ⇒, so N ′ = Eval(N).

Now assume that M diverges. If Eval(N) exists, then by the above argument
we can show that Eval(M) exists as well. So if M diverges, then so does N . ut

M M ′ M ′ = Eval(M) Evaluation step

N L Cl(M ′) = Cl(L) = Cl(N ′) Non-evaluation step

N ′ N ′ = Eval(N) Calculus step

Fig. 2. Sketch of the traditional proof of computational soundness.

4 In Figs. 2 and 3, double-headed arrows denote reflexive, transitive closures of the
respective relations, and a line with arrows on both ends denotes the reflexive, sym-
metric, transitive closure of the respective relation.

The above approach does not work for a calculus that lacks confluence. But it
turns out that general confluence is not required for soundness! Since the outcome
of a term is defined via the evaluation reduction, we can instead use a weaker
form of confluence: confluence with respect to evaluation. The two properties
given below that we call lift and project (see also Fig. 3), together with the class
preservation property, are sufficient to show soundness.

M M ′ M M ′ M ′′

N N ′ N N ′

Lift Project

Fig. 3. The lift and project properties.

Definition 8 (Lift). A calculus has the lift property if for any reduction se-

quence M ↪→ N ⇒∗ N ′ there exists a sequence M ⇒∗ M ′↪→∗N ′.

Definition 9 (Project). A calculus has the project property if M ↪→ N , M ⇒∗

M ′ implies that there exist terms M ′′, N ′ s.t. M ′ ⇒∗ M ′′, N ⇒∗ N ′, and
M ′′↪→∗N ′.

The project property is the formalization of the notion of confluence w.r.t.
evaluation mentioned above. It says that an evaluation step and a non-evaluation
step leaving the same term can always be brought back together. The lift prop-
erty is equivalent to standardization: any reduction sequence can be transformed
into a standard sequence by pushing “backwards” sequences of evaluation steps
through single non-evaluation steps. There is a benefit in proving standardiza-
tion using the lift property (rather than directly): proofs of both the lift and
project properties use the same mechanism (certain properties of residuals and
finite developments [Bar84]) and share several intermediate results.

The following theorem embodies our new approach to proving soundness:

Theorem 2. Suppose that ⇒ is confluent. Then lift, project, and class preser-
vation imply soundness.

Proof. We want to show that if M ↔ N , then Outcome(M) = Outcome(N).
Without loss of generality assume that M and N are connected by a single step.
Assume that Outcome(M) 6= ⊥. Let M ′ = Eval(M). In all four of the following
cases, Outcome(M) = Outcome(N):

– M ↪→ N . By the project property, M ⇒∗ M ′ implies that there exist M ′′, N ′

s.t. M ′ ⇒∗ M ′′, N ⇒∗ N ′, and M ′′↪→∗N ′. But M ′ is a normal form w.r.t.⇒,
so M ′ = M ′′. By the class preservation property Cl(M ′) = Cl(N ′), so N ′ is
also a normal form. Hence N ′ = Eval(N), and Outcome(M) = Outcome(N).

– N ↪→M . Similar to the previous case by the lift property.
– M ⇒ N . By confluence of ⇒ there exists N ′ s.t. N ⇒∗ N ′, M ′ ⇒∗ N ′. But

M ′ is a normal form, so N ⇒∗ M ′ = Eval(N).
– N ⇒M . Then by transitivity of ⇒∗, N ⇒∗ M ′ = Eval(N).

Now let Outcome(M) = ⊥. Assuming Outcome(N) 6= ⊥, by the above argu-
ment Outcome(M) = Outcome(N) 6= ⊥, and we get a contradiction. ut
C and F satisfy the lift, project, and class preservation properties, so they

enjoy the soundness property. For the technical details, consult [MT00].

4 Weak Distributivity

We say that a module transformation T is weakly distributive if and only if
T (D1 ⊕ D2) = T (T (D1) ⊕ T (D2)), where = is syntactic equality (modulo α-
renaming and module binding order).

Let Tlink be a single module transformation performing all link-time optimiza-
tions. Suppose that the translator from source modules to intermediate modules
is given by s2i(D) = Tlink(D)5. Also suppose that the linking operator on in-
termediate modules is defined as D1 ⊕link D2 = Tlink(D1 ⊕ D2). Then if Tlink

is weakly distributive, we have that s2i(D1) ⊕link s2i(D2) = Tlink(Tlink(D1) ⊕
Tlink(D2)) = Tlink(D1 ⊕ D2) = s2i(D1 ⊕ D2). Thus, compiling a “link tree” of
modules in the link-time compilation model gives exactly the same code as com-
pilation in whole-program model. This is the sense in which weakly distributive
transformations are promising candidates for link-time optimizations.

Here we briefly discuss two classes of weakly distributive module transforma-
tions T. We assume the following about T: (1) it is strongly normalizing; and (2),

if T can be applied to a module [Xi
n
7→
i=1

Mi], then it can be applied to a module

[Xi
n
7→
i=1

Mi, Yj
m
7→
j=1

Nj], i.e. to the same module with extra bindings. To moti-

vate the second assumption, let FI be function inlining on modules restricted
to non-recursive substitutions (so that the first assumption is satisfied). Con-
sider the following inlining/linking sequence: [X 7→ λw.Y , Z 7→ λx.X] ⊕ [Y 7→

λy.Z]
FI
→ [X 7→ λw.Y , Z 7→ λx.λw′.Y] ⊕ [Y 7→ λy.Z] →F [X 7→ λw.Y , Z 7→

λx.λw′.Y , Y 7→ λy.Z]
FI
→ [X 7→ λw.λy.Z, Z 7→ λx.λw′.Y , Y 7→ λy.Z]. On the

other hand, linking first gives: [X 7→ λw.Y , Z 7→ λx.X, Y 7→ λy.Z], and at
this point the cycle becomes apparent, and no inlining is possible. Thus, extra
bindings can prevent weak distributivity by blocking the transformation.

A simple class of weakly distributive transformations are those satisfying two
conditions: (1) idempotence: T (T (D)) = T (D); and (2) (strong) distributivity

5 For simplicity, we assume the source and intermediate languages are the same.

over ⊕: T (D1 ⊕ D2) = T (D1) ⊕ T (D2). It is easy to show that such a T is
weakly distributive. Examples include many combinations of intra-term trans-
formations, such as constant folding/propagation, dead code elimination, and
function inlining (restricted to non-recursive cases). Note that the second condi-
tion implies that the transformation independently transforms the components
of a module; i.e., the transformation cannot use the (subst) or (GC) rule.

Closures of confluent transformations T form another class of weakly dis-
tributive transformations. It is possible to simulate any transformation step in
T (T (D1) ⊕ T (D2)) by a corresponding step in T (D1 ⊕ D2). Using confluence,
strong normalization, and the extra-bindings assumption, it can be shown that
the two expressions transform to the same result. For example, constant fold-
ing/propagation at the module level (i.e., including the (subst) rule) has all of
these properties, and so is weakly distributive.

5 Future Work

There are several directions in which we plan to extend the work presented here.
Types: We are exploring several type systems for our module calculus, es-

pecially ones which express polymorphism via intersection and union types.
These have intriguing properties for modular analysis and link-time compila-
tion [Jim96,Ban97,KW99].

Non-local Transformations: So far, we have only considered meaning preser-
vation and weak distributivity in the context of simple local transformations.
We are investigating global transformations like closure conversion, uncurrying,
and useless variable elimination in the context of link-time compilation.

Weakening Weak Distributivity: Weak distributivity requires the rather strong
condition of synactic equality between T (D1 ⊕ D2) and T (T (D1) ⊕ T (D2)).
Weaker notions of equality may also be suitable. Note that “has the same mean-
ing as” is too weak, since it does not capture the pragmatic relationship between
the two sides; they should have “about the same efficiency”.

Abstracting over the Base Language: Our framework assumes that the module
calculus is built upon a particular base calculus. Inspired by [AZ99], we would
like to parameterize our module calculus over any base calculus.

Pragmatics: We plan to empirically evaluate if link-time compilation can give
reasonable “bang for the buck” in the context of a simple prototype compiler.

References

[AB97] Z. M. Ariola and S. Blom. Cyclic lambda calculi. In TACS 97, Sendai,

Japan, 1997.
[AF97] Z. M. Ariola and M. Felleisen. The call-by-need lambda calculus. J. Funct.

Prog., 3(7), May 1997.
[AFM+95] Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. The

call-by-need lambda calculus. In Conf. Rec. 22nd Ann. ACM Symp. Princ.

of Prog. Langs., pp. 233–246, 1995.

[AK97] Z. M. Ariola and J. W. Klop. Lambda calculus with explicit recursion. Inf.

& Comput., 139(2):154–233, 15 Dec. 1997.
[AZ99] D. Ancona and E. Zucca. A primitive calculus for module systems. In

G. Nadathur, ed., Proc. Int’l Conf. on Principles and Practice of Declarative

Programming, LNCS, Paris, France, 29 Sept. – 1 Oct. 1999. Springer-Verlag.
[Ban97] A. Banerjee. A modular, polyvariant, and type-based closure analysis. In

Proc. 1997 Int’l Conf. Functional Programming, 1997.
[Bar84] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-

Holland, revised edition, 1984.
[Car97] L. Cardelli. Program fragments, linking, and modularization. In POPL ’97

[POPL97].
[CHP97] K. Crary, R. Harper, and S. Puri. What is a recursive module? In Proc.

ACM SIGPLAN ’97 Conf. Prog. Lang. Design & Impl., 1997.
[DEW99] S. Dossopoulou, S. Eisenbach, and D. Wragg. A fragment calculus – towards

a model of separate compilation, linking, and binary compatibility. In Proc.

14th Ann. IEEE Symp. Logic in Computer Sci., July 1999.
[DS96] D. Duggan and C. Sourelis. Mixin modules. In Proc. 1996 Int’l Conf.

Functional Programming, pp. 262–273, 1996.
[Fer95] M. F. Fernandez. Simple and effective link-time optimization of Modula-3

programs. In Proc. ACM SIGPLAN ’95 Conf. Prog. Lang. Design & Impl.,
pp. 103–115, 1995.

[FF98] M. Flatt and M. Felleisen. Units: Cool modules for HOT languages. In
Proc. ACM SIGPLAN ’98 Conf. Prog. Lang. Design & Impl., 1998.

[FH92] M. Felleisen and R. Hieb. The revised report on the syntactic theories of
sequential control and state. Theor. Comp. Sc., 102:235–271, 1992.

[HL94] R. Harper and M. Lillibridge. A type-theoretic approach to higher-order
modules with sharing. In POPL ’94 [POPL94], pp. 123–137.

[Jim96] T. Jim. What are principal typings and what are they good for? In Conf.

Rec. POPL ’96: 23rd ACM Symp. Princ. of Prog. Langs., 1996.
[KW99] A. J. Kfoury and J. B. Wells. Principality and decidable type inference for

finite-rank intersection types. In Conf. Rec. POPL ’99: 26th ACM Symp.

Princ. of Prog. Langs., pp. 161–174, 1999.
[Ler94] X. Leroy. Manifest types, modules, and separate compilation. In POPL ’94

[POPL94], pp. 109–122.
[Ler96] X. Leroy. A modular module system. Tech. Rep. 2866, INRIA, Apr. 1996.
[MT00] E. Machkasova and F. Turbak. A calculus for link-time compilation. Tech-

nical report, Comp. Sci. Dept., Boston Univ., 2000.
[PC97] M. P. Plezbert and R. K. Cytron. Is “just in time” = “better late than

never”? In POPL ’97 [POPL97], pp. 120–131.
[Plo75] G. D. Plotkin. Call-by-name, call-by-value and the lambda calculus. Theor.

Comp. Sc., 1:125–159, 1975.
[POPL94] Conf. Rec. 21st Ann. ACM Symp. Princ. of Prog. Langs., 1994.
[POPL97] Conf. Rec. POPL ’97: 24th ACM Symp. Princ. of Prog. Langs., 1997.
[SA93] Z. Shao and A. Appel. Smartest recompilation. In Conf. Rec. 20th Ann.

ACM Symp. Princ. of Prog. Langs., 1993.
[WV99] J. B. Wells and R. Vestergaard. Confluent equational reasoning for linking

with first-class primitive modules (long version). Full paper with three
appendices for proofs, Aug. 1999.

