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Abstract

Our purpose is to promote a second-class mechanism — the
synchronization barrier — to a first-class value. We in-
troduce the synchron, a novel synchronization mechanism
that enables the coordination of a dynamically varying set
of concurrent threads that share access to a first-class syn-
chronization token. We demonstrate how synchrons can be
used to modularly manage resources in cases where existing
techniques are either inapplicable or non-modular. In par-
ticular, synchronized lazy aggregates enable the first space-
efficient aggregate data decomposition of a wide range of
algorithms. We also introduce explicit-demand graph reduc-
tion, a new semantic framework that we have developed to
describe concurrency and explain the meaning of a synchron
rendezvous.

1 Overview

Significant expressive power can be harnessed by capturing
programming language idioms in the form of first-class val-
ues. A value is said to be first-class when it can be (1) named
(2) passed as an argument to a procedure (3) returned as
a result from a procedure and (4) stored in a data struc-
ture. First-classness augments expressive power by allowing
previously idiosyncratic and artificially limited mechanisms
to be manipulated in general and orthogonal ways. Clas-
sic examples of powerful first-class values include first-class
procedures and continuations.

In this paper, we argue for the first-class citizenship of
a new kind of value: the synchronization barrier (hence-
forth abbreviated as “barrier”). A barrier is a mechanism
for coordinating the execution of concurrent threads. When
a thread waits at a barrier, its execution is suspended un-
til all threads participating in the barrier are also waiting
at the barrier. After this rendezvous, execution of the sus-
pended threads is resumed. By constraining the order of
computational events among threads, barriers help to man-
age shared resources. For example, threads atomically de-
positing money in a shared bank account can be forced to
wait at a barrier in order to guarantee that each observes
the same final balance after crossing the barrier. Even in

a functional language, barriers are helpful for limiting the
amount of memory used by a program.

Barriers serve a purpose different from that of mutual
exclusion mechanisms like semaphores [Dij68], locks [Bir89],
and monitors [Hoa74]. Whereas mutual exclusion mech-
anisms prevent threads from simultaneously accessing re-
sources, barriers manage resources (e.g., shared variables
and memory) by limiting the extent to which threads can
be “out of step”.

Although mutual exclusion mechanisms have been en-
capsulated in first-class values like semaphores and locks,
barriers are traditionally second-class mechanisms. In most
data parallel models, selected processors engage in an im-
plicit rendezvous after the execution of a data parallel opera-
tor. The communication protocols in channel-based concur-
rent process models similarly involve an implicit rendezvous
[Hoa85, Mil89, CM90]. Some languages (e.g., Id [AAS95])
permit the programmer to insert explicit barriers, but they
are not manipulable as first-class values.

One approach to making barriers first-class is to manip-
ulate them via the following interface:

e barrier : integer — barrier. Create a new barrier
value for synchronizing integer threads. A rendezvous
will occur at the barrier when integer threads are sus-
pended at the barrier.

e pause : barrier — unit. Causes the thread in which
the pause is called to be suspended at the given barrier
until a rendezvous occurs, at which point the thread
resumes with the return of the pause. It is an error to
call pause after a rendezvous has occurred.

This sort of first-class barrier captures the essence of most
conventional barrier constructs, which are designed so that
it is easy to determine exactly how many threads will par-
ticipate in the barrier. This number is either known stat-
ically or can conveniently be determined at run-time when
the structure implementing the barrier is created. In these
cases, a barrier can be implemented as a pair of a counter
and a set of suspended threads. The counter is initialized to
the number of participating threads. When a thread encoun-
ters a barrier, the counter is decremented and the thread is
suspended and added to the set. When the counter reaches
zero, the rendezvous occurs, and all the threads in the set are
resumed. Note that all threads are treated symmetrically in
this synchronization protocol, in contrast with other proto-
cols in which some threads wait for a signal generated by
others.



Although straightforward, the barrier/pause form of
first-class barriers suffers from some important modularity
problems. The main limitation of this form of first-class
barrier (as well as existing second-class barrier mechanisms)
is that it cannot handle situations in which the number of
threads participating in the barrier cannot be predicted at
the point where the barrier is created. Section 2 presents ex-
amples where first-class barriers having a dynamically vary-
ing set of participating threads are used in an essential way.
Furthermore, the barrier/pause style of barrier requires
the programmer to keep track of the number of threads par-
ticipating in the barrier — an error-prone process better
handled by the language implementation.

We have invented a novel first-class barrier, the synchron,
that makes it possible to coordinate a set of threads whose
size is not known when the barrier is created. Instead, a ren-
dezvous occurs when the following dynamically determined
rendezvous condition is met: every thread that could ever
wait at the barrier is waiting at the barrier. All threads
with access to the synchron are potential participants in the
barrier. A thread participates in the barrier by waiting on
the synchron. A thread can leave the set of potential partici-
pants by dropping access to the synchron. A thread can also
prevent a rendezvous by maintaining access to the synchron
without waiting on it. A synchron is a one-shot barrier; af-
ter a rendezvous, a synchron “expires” and cannot be used
again.

It is helpful to think of synchrons in terms of tempo-
ral constraints. A synchron represents the (as-yet unde-
termined) instant of time at which the rendezvous occurs.
Operations can be constrained to happen before or after
this instant, or left unordered with respect to it. Similarly,
one synchron can be constrained to represent an instant be-
fore, after, or simultaneous with that of another synchron.
A language supporting synchrons is responsible for solving
the temporal constraints; if the constraints are inconsistent,
deadlock results.

The interface to synchrons is specified by the following
three procedures:

e synchron : unit — synchron. Returns a new first-
class synchron value. A synchron is a first-class barrier
that represents the instant of time at which the barrier
rendezvous occurs.

e wait : synchron — unit. Causes the thread in which
the wait is called to suspend until a rendezvous occurs
at the given synchron, after which the thread resumes
with the return of the wait.

e simul : synchron X synchron — unit. Constrains
both argument synchrons to represent the same instant
of time.

All temporal constraints involving operations and synchrons
are specified via wait and simul. Although simul declares
an explicit temporal constraint, the temporal constraints ex-
pressed via wait are implicit in the control flow of individual
threads.

The design of synchrons was driven by the goal of ex-
pressing space-efficient algorithms as the modular composi-
tion of aggregate data operators. Following Hughes [Hug84],
we argue in Section 2.2 that concurrency and synchroniza-
tion are essential for preserving the space complexity of non-
modular algorithms when decomposing them into reusable

components that communicate via aggregate data. In par-
ticular, synchrons are the first run-time mechanism to enable
the space-efficient decomposition of algorithms that manip-
ulate aggregates non-linearly.

The first-classness of synchrons raises an important ques-
tion with semantic and pragmatic implications: how is the
rendezvous condition computed? Informally, a rendezvous
should only take place when all threads holding a synchron
are waiting on it. Pointers to a synchron can be classified
into two types: waiting and non-waiting. A suspended call
to wait holds a waiting pointer to a synchron; all other ref-
erences are non-waiting. A non-waiting pointer prevents a
rendezvous because a thread with non-waiting access to a
synchron might later call wait on it or share it with other
threads. However, when all references to a synchron are
waiting references, it is clearly safe for a rendezvous to oc-
cur. After the rendezvous, no references to the synchron can
remain; this accounts for the one-shot nature of synchrons.
Thus, the semantics of synchrons is intimately tied to details
of automatic storage management. The semantics presented
in Section 5 formalizes this relationship in a high-level way.

The rest of the paper is organized as follows: Section 2
presents examples that illustrate the utility of synchrons.
Section 3 surveys related work. Section 4 introduces OPERA,
a concurrent version of Scheme [CR91] that supports syn-
chrons. Section 5 gives a brief overview of EDGAR, a graph-
rewriting framework that formalizes the semantics of syn-
chrons. Section 6 concludes with a brief description of our
experiences with synchrons.

2 Synchron Examples

2.1 An Event Scheduler

To introduce the power of first-class barriers, we present a
simple event scheduler. The interface to the scheduler is
defined by the following two Scheme procedures:

e (event thunk) creates an event for performing the ac-
tion specifed by the parameterless procedure thunk.

e (-> pre post) declares that the event pre must be
performed before the event post.

The goal of the scheduler is to perform the actions of all
events in an order that is consistent with the -> declarations.
A subtlety of the system is that performing the action of an
event may introduce new temporal constraints. Consider
the following example:

(let ((a (event (lambda () (display "A"))))
(b (event (lambda () (display "B"))))
(c (event (lambda () (display "C")))))
(let ((d (event (lambda ()
(begin (-> b ¢)
(display "D"))))))
(-> a d)))

The (-> a d) forces A to be displayed before the declaration
(=> b c¢) is encountered. The possible outputs of this ex-
pression are ABCD, ABDC, and ADBC. Unsolvable constraints
result in deadlock; the following example deadlocks after
displaying A:



(let ((b (event (lambda () (display "B"))))
(c (event (lambda () (display "C")))))
(let ((a (event (lambda ()
(begin (-> ¢ b)
(display "A"))))))
(begin (-> a b) (-> b ¢©))))

Figure 1 shows a complete implementation of the sched-
uler in a concurrent version of Scheme. An event is repre-
sented as a pair of synchrons that specify when the action as-
sociated with the event starts and stops. As in other concur-
rent versions of Scheme, the future construct immediately
returns a placeholder and commences the concurrent evalu-
ation of the placeholder value [Mil87, Hal85, For91]. Within
event, future forks a thread that forces the thunk applica-
tion to be sandwiched between the start and stop instants.
The -> procedure forks a thread that guarantees that the
stopping instant of the first event must precede the starting
instant of the second event. The language implementation is
responsible for dynamically solving the temporal constraints
introduced by the synchrons.

The event scheduler makes essential use of the first-class
nature of synchrons and of the rendezvous condition. If syn-
chrons were not first-class, it would not be possible to bun-
dle them up into an event. Furthemore, since the scheduling
constraints cannot in general be determined without execut-
ing the program, a barrier mechanism requiring advanced
knowledge of the number of participating threads would not
be helpful in this situation.

(define (event thunk)
(let ((start (synchron))
(stop (synchron)))
(begin
(future (begin (wait start)
(thunk)
(wait stop)))
(cons start stop))))

(define (event-start event) (car event))
(define (event-stop event) (cdr event))

(define (-> pre post)
(let ((pre-stop (event-stop pre))
(post-start (event-start post)))
(future (begin (wait pre-stop)
(wait post-start)))))

Figure 1: Synchron-based event scheduler.

2.2 Space-Efficient Aggregate Data Oper-
ators

A standard modular programming technique is to express
monolithic (i.e. non-modular) programs as the composi-
tion of mix-and-match operators on aggregate data (lists,
streams, arrays, trees). One drawback of this aggregate
data paradigm is that intermediate data structures can cause
modular programs to require more time and space than
their monolithic counterparts. Numerous strategies have
been developed to reduce these overheads in aggregate data
programs (e.g., laziness [Hug90], algebraic transformations
[DR76, Bir88], listlessness [Wad84], deforestation [Wad88,

GLJ93], series [Wat90]). However, these strategies either
unduly restrict the style of aggregate data program allowed
(e.g., trees are not allowed; aggregates may only have a sin-
gle consumer), or they provide no guarantees (e.g., a trans-
formation may increase overhead instead of decreasing it).

The synchron is the first run-time mechanism that en-
ables a broad class of algorithms to be modularized into
aggregate data programs that exhibit the same asymptotic
time and space complexities as the original algorithms. Time
complexity is easy to preserve, but the presence of aggre-
gates can make it difficult to preserve space complexity. For
example, list-based decompositions of constant-space algo-
rithms can require linear space, and tree-based decomposi-
tions can require space proportional to the number of ele-
ments in the tree rather than the height of the tree. Space-
efficient aggregate data programs were the primary motiva-
tion for inventing synchrons.

We illustrate this technique in the context of a simple
function for averaging a sequence a numbers. Given a func-
tion g: integer — integer, a predicate p: integer — boolean,
and an integer a, consider the sequence ¢°(a), g'(a), g°(a),
..., 9" '(a), where n is the smallest non-negative integer
for which p(g™(a)) is true. Intuitively, a function that av-
erages the numbers in this sequence should run in constant
space because it only needs to keep track of three state vari-
ables: the current number, the running sum of the numbers,
and the length of the sequence. Yet, as we show below, stan-
dard approaches for expressing this problem in an aggregate
data style require space linear in the length of the sequence.
In contrast, a corresponding concurrent program with syn-
chrons is guaranteed to run in constant space.

In the aggregate data style, the averaging function ex-
hibits the structure of the following block diagram:

. SUM

r LENGTH I

GENERATE

Figure 2: Block diagram for an averaging function.

GENERATE produces a sequence determined by the parame-
ters g, p, and a. This sequence is consumed by blocks that
calculate the sum and length of the sequence; these two
numbers are divided to give the average.!

Figure 3 shows a realization of the block diagram in
Scheme. The GENERATE, SUM, and LENGTH blocks are im-
plemented in terms of the higher-order sequence operators
generate and accumulate. (generate seed next done?)
creates a sequence of values starting at seed and iteratively
applies a next function until the done? predicate is true.
(accumulate op init seq) iteratively accumulates the el-
ements of seq with the binary operator op starting with init
as the initial accumulator.

Definitions of generate and accumulate appear in Fig-
ure 4. These in turn use the abstractions pack and unpack

n the diagram, thick lines designate the transmission of a se-
quence, while thin lines designate the transmission of a single number.



(define (average g p a)
(let ((nums (generate a g p)))
(/ (accumulate + O nums)
(accumulate (lambda (x y) (+ 1 y))
0
nums))))

Figure 3: Modular implementation of an averaging function
in terms of higher-order sequence operators.

whose purpose is to abstract over different sequence imple-
mentations. In the implementation of sequences as strict
lists (Figure 5), the average function requires space linear
in the length of the file because the entire nums sequence
must be generated before any accumulation operations can
be performed.

(define (generate init next done?)
(if (done? init)
9
(pack init
(generate (next init) next done?))))

(define (accumulate op init seq)
(if (null? seq)
init
(unpack seq
(lambda (hd t1)
(accumulate op (op hd init) t1)))))

Figure 4: Higher-order sequence procedures.

(pack Ei E2) desugars to (cons Ej Ep)

(define (unpack 1lst f)
(f (car 1st) (cdr 1st)))

Figure 5: Strict Implementation of sequences.

Even if lazy lists are used (Figure 6), the average func-
tion requires linear space in a sequential language. Lazi-
ness does permit producer/consumer coroutining between
the generation of nums and the accumulation in one of the
arguments to /. But without some form of concurrency,
evaluation of one argument to / must finish before the eval-
uation of the other argument can begin. At this juncture,
the entire nums sequence must be in memory, implying a lin-
ear space requirement. Hughes argues in [Hug84] that any
sequential evaluation strategy for average must use linear
space.

Concurrency alone does not guarantee efficient space re-
quirements for average. Suppose average is executed in a
concurrent version of Scheme in which all subexpressions of
an application expression are evaluated in parallel but the
procedure call itself is strict. In the worst case, the sequence
implementation of Figure 6 can still require linear space be-
cause the evaluation of one argument to / may race ahead
of the evaluation of the other argument, forcing the entire
nums sequence to be stored in memory at one time.

(pack Ei E2) desugars to (cons Ej (delay E2))

(define (unpack 1lst f)
(f (car 1lst) (force (cdr 1lst))))

Figure 6: Lazy implementation of sequences.

(pack E1 E2)
desugars to (list (synchron) E; (delay Ep))

(define (unpack seq f)
(let ((sync (first seq))
(hd (second seq))
(t1 (third seq)))
(begin (wait sync)
(f hd (force t1)))))

Figure 7: Synchron-based implementation of sequences.

Constant-space behavior for average can be guaranteed
when synchrons are used to augment the lazy implementa-
tion of sequences in a concurrent language (Figure 7); we
call this technique synchronized lazy aggregates. pack asso-
ciates a new synchron with each element of the sequence;
unpack waits on this synchron before performing any oper-
ation on the element. The barrier provided by the synchron
prevents the accumulation in one argument to / from racing
ahead of the accumulation in the other argument. In fact,
the synchron forces the two accumulations to proceeed in
lock step, so that the computation only uses constant space.

Intuitively, each synchron in a synchronized lazy aggre-
gate models a strict procedure call boundary in the corre-
sponding monolithic version of an algorithm. Figure 8(a) is
a stylized depiction of some of the operations performed by a
monolithic iterative averaging function. The horizontal dot-
ted lines indicate the boundary of a loop or tail-recursive
procedure call in the execution of such a function. In a
language with strict procedure calls, all operations above a
dotted line must complete before any operations below the
line are initiated. This is true whether or not the arguments
are evaluated concurrently. A strict procedure call thus acts
as a kind of barrier between the evaluation of the arguments
and the computation of the body. This barrier is critical for
guaranteeing that the averaging computation can be per-
formed in constant space. Indeed, the space consumption
problems that arise in the presence of non-strict (e.g., lazy
and eager) procedure calls are typically due to the lack of
such barriers.

By decomposing a computation into blocks with local
procedure calls, the aggregate data style replaces each global
barrier by a collection of local barriers (Figure 8(b)). Data
transmission provides a loose coupling betweeen the blocks
that is generally not good enough to simulate the global
barrier. Some additional mechanism is needed to constrain
corresponding local barriers to behave like the global bar-
rier of the monolithic computation. Synchrons are such a
mechanism. As first-class values, synchrons can be trans-
mitted between blocks. When the same synchron is shared
by several blocks, it serves the role of a global barrier (Fig-
ure 8(c)). In this way, synchrons constrain the network of
blocks to exhibit the same asymptotic space complexity as



Figure 8: Shared synchrons (c) allow local strict procedure call barriers (b) to simulate the global strict procedure call barriers

of monolithic computations (a).

the corresponding monolithic computation.

This approach to the lock step processing of aggregate
data operators can be generalized to handle recursively-
processed sequences and tree-structured data. For example,
alpha-renaming of abstract syntax trees can be expressed
as the composition of reusable tree operators. The result-
ing modular program requires intermediate space propor-
tional to the height of the tree, not the number of nodes.
Lock step processing in the presence of recursion and tree-
structured data is more complex than the case of linear it-
eration because it is necessary to synchronize at procedure
return as well as procedure call. The modular handling of
tail-recursion in the extended system is especially tricky and
requires an extension to the synchron interface. Space does
not permit a detailed discussion of these issues; see [Tur94]
for in-depth coverage.

The average example emphasizes that concurrency and
first-class barriers are important tools for managing resources
(in this case, memory) within a modular program. The fea-
ture of average that is hard to handle is the fact that the
aggregate nums is used non-linearly (i.e., more than once).
When all aggregates are used linearly, simpler mechanisms,
like laziness and deforestation, suffice to make programs
space-efficient. These mechanisms effectively match the pro-
ducer of an element of an aggregate structure with its single
consumer. But when there are multiple consumers for a
component of an aggregate, it is tricky to direct control be-
tween the producer and the consumers to obtain lock step
processing. This is why block diagrams exhibiting fan-out of
aggregates are difficult to make space-efficient. In general,
some form of concurrency and synchronization are neces-
sary to process the producers and multiple consumers in
lock step.

Fan-in (blocks with multiple aggregate inputs) is much
more straightforward to handle than fan-out. The goal is
to unify corresponding barriers from multiple inputs. This
is the purpose of the simul operator on synchrons. The
simul operator is not illustrated by the average example,
but would be required in a program that maps a binary
procedure over two sequence arguments. Figure 9 shows

this map2 procedure and the associated repack2 abstrac-
tion. repack2 uses simul to express that the time instants
associated with the two input synchrons and single output
synchron are all identical.

(define (map2 f seql seq2)
(if (or (null? seql) (null? seq2))
70
(repack2 seql seq2 f
(lambda (restl rest2)
(map f restl rest2)))))

(define (repack2 seql seq2 f g)
(let ((syncl (first seql))
(sync2 (first seq2))
(hd1 (second seql))
(hd2 (second seq2))
(t11 (third seql))
(t12 (third seq2)))
(list (simul syncl sync2)
(f hdl hd2)
(delay (g (force tll)
(force t12))))))

Figure 9: Binary mapping procedure that illustrates simul.

3 Related Work

The synchronization mechanism most closely related to the
synchron is Hughes’s synch E construct [Hug84]. This is
similar to Scheme’s delay in that it creates a promise for
evaluating E. The difference is that there are two distinct
functions (let’s call them forcel and force2) for forcing the
computation of E. When one of these functions is called on
a promise, the thread executing the call is suspended until
the other function is called. After both functions have been
called, the value of E is computed and both threads are
resumed with this value as the result of the call.



The value returned by synch acts as a limited kind of
first-class barrier. Hughes’s barrier only permits a rendezvous
between exactly two threads; coordinating more threads re-
quires a collection of such barriers. Hughes describes a mod-
ular, constant-space averaging function, but his generators
and accumulators are not general; they include hardwired
assumptions about the particular structure of the averaging
problem. In contrast, the generate and accumulate func-
tions presented above are completely general.

The main drawback of Hughes’s approach (as well as of
the barrier/pause mechanism suggested in Section 1) is
that knowledge of the number of threads participating in a
barrier must be explicity encoded in a program, obstructing
modularity. For example, using Hughes’s mechanism, it is
not possible to implement generate and accumulate from
Section 2.2 in such a way that they maintain the same inter-
face and still yield lock-step computations. The problem is
that generate doesn’t “know” how many barriers to create,
and each call to accumulate doesn’t “know” which forcing
function to call at a barrier. Synchrons are more more mod-
ular than Hughes’s barrier because the number of threads
participating in a barrier is automatically determined by the
flow of synchron values through a program, and all threads
enter a rendezvous via the same wait primitive.

Waters’s series system [Wat90, Wat91] is the only other
system we know of that can execute aggregate data pro-
grams like average in constant space. A series is an abstrac-
tion of an iteratively processed sequence of values. Programs
structured as blocks communicating via series are guaran-
teed to compile into efficient loops as long as the block di-
agrams satisfy certain conditions that the programmer can
readily verify. (Programs not satisfying these conditions are
rejected by the compiler.)

The run-time nature of synchrons makes them more flex-
ible than a compiler-based approach like series. The series
compiler requires that the data dependencies between all
aggregate data operators be statically determinable. Syn-
chronized lazy aggregates are more general than series be-
cause they allow the operators to be configured dynami-
cally. For example, synchronized lazy aggregates can express
a constant-space function that takes a list of accumulators
and returns the results of each accumulator on the aggregate
produced by a single generator. Such a function cannot be
expressed via series because the accumulators are not stati-
cally known.

Moreover, whereas series is limited to iteratively pro-
cessed sequences, synchronized lazy aggregates can handle
recursively processed sequences and tree-structured data. It
would be worthwhile to adapt series compilation techniques
to handle these more general kinds of processing; we plan to
pursue this line of research.

Deforestation [Wad88, GLJ93] is program transforma-
tion technique that removes intermediate data structures
from programs. It is more powerful than series in the sense
that it can remove tree-structured data. However, unlike
series and synchronized lazy aggregates, current deforesta-
tion technology cannot deal with fan-out of aggregates. To
handle cases like average, transformations that combine ac-
cumulators have been proposed [GLJ93], but these are ad
hoc and it is not clear how to generalize them to general
block diagrams.

Barriers are common in parallel processing systems. The
operators in many data parallel languages are implicitly
sandwiched between global barriers that limit the computa-
tion and communication that can occur between successive

rendezvous. In other parallel systems, programmers must
explicitly insert barriers to ensure synchronization between
processors that share memory. Such barriers are second-
class mechanisms that coordinate a set of processes known
at barrier-creation time.

The Id language supplies a barrier construct for manag-
ing program resources and scheduling side-effects in a lan-
guage based on eager evaluation [Bar92, AAS95]. Barriers
are indicated by a dotted line that separates groups of ea-
gerly evaluated expressions; no computation is initiated be-
low the line until all computations initiated above the line
have terminated. Because Id barriers can be localized to a
particular set of parallel activities, they can express more
fine-grained coordination than is possible with the global
barriers of data parallel languages. But the inability to
manipulate barriers as first-class entities restricts their ex-
pressiveness; the examples given in Section 2 cannot be ex-
pressed using Id barriers.

On the other hand, synchrons are powerful enough to
simluate Id barriers. A barrier can be represented as a single
synchron. All threads executing above a barrier can be mod-
ified to call wait on this synchron as their final action, while
all expressions appearing below the barrier can be prefixed
with a call to wait on the synchron. The first-classness and
variable membership of synchrons makes it easy for threads
above the barrier to transitively pass along the synchron to
all of their descendent threads.

The communication handshake in channel-based concur-
rent languages (e.g., [Hoa85, Mil89, CM90]) involves a form
of barrier. Neither the sending thread nor receiving thread(s)
can proceed until a rendezvous of all the participants. In
these languages, synchronization is not separable from com-
munication, and communication events are not first-class.
Reppy’s first-class events [Rep91] really act as first-class
event generators; every call of his sync on a given “event”
causes the current thread to wait for a different rendezvous.
Synchrons can be viewed as a way of permitting the mul-
tiway handshake of CSP [Hoa85] to be integrated into the
aggregate data paradigm.

A variant of synchrons can be implemented in Bawden’s
linear language [Baw92], in which objects can only be shared
via an explicit copy operation. The copy operation for syn-
chrons can maintain a count of non-waiting pointers; a ren-
dezvous occurs when this number drops to zero. A language
implementing synchrons removes the need for explicit copy
operations by managing this count automatically.

The synchron is a new member of a class of high-level
programming language features whose semantics are inex-
tricably tied to garbage collection. Other examples of such
G C-dependent features include object finalization and weak
pairs [Wil]. The semantics of these features are defined in
terms of garbage collection; even if memory were infinite
and there were no need for storage reclamation, implement-
ing such features would still require some form of garbage
collection.

4 Opera: A Concurrent Scheme with Syn-
chrons

Synchrons are viable in any concurrent language that sup-
ports automatic storage managment. However, for the sake
of concreteness, we will focus on one such language: OPERA,
a concurrent dialect of Scheme. (A concurrent version of ML
would have been another reasonable choice.) The synchron



examples from Section 2 are written in OPERA. A grammar
for the OPERA kernel appears in Figure 10.2

Unlike Scheme, OPERA’s application has a concurrent se-
mantics (subexpressions of call are evaluated in parallel).
But, as in Scheme, the application itself is strict (all argu-
ments must be evaluated to values before the application
occurs).

P € Program
E €  Expression
I € Identifier
L € Literal
O € Primitive Operator

e
Il

(program Epoqy (define Iname Edes)™)

=

L | I| (primop 0)

(lambda (Iformat™) Ebody)

(call Erator Erana™®) ; keyword optional
(if Etest Ethen Eelse)

(set! Iname Ebody)

(delay Epoqy) | (future Epoqy)
(exclusive Eezci Epody)

usual Scheme literals
::= usual Scheme identifiers
n= + | * | cons | car | cdr

| other Scheme primitives
|

|

Q=

synchron | wait | simul | synchron?
touch | excludon | excludon?

Figure 10: Grammar for the OPERA kernel.

The default strictness of OPERA application can be cir-
cumvented with two classic forms of non-strictness found in
other dialects of Lisp [Mil87, Hal85, For91]. (delay E) sup-
ports lazy evaluation by suspending evaluation of E until
its value is required. (future E) supports eager evaluation
by immediately returning a placeholder for the value of E,
which is evaluated concurrently with the rest of the pro-
gram. future and the default parallel argument evaluation
strategy are the two sources of concurrency in OPERA. The
evaluations associated with the placeholders produced by
delay and future can be explicitly forced by a touch prim-
itive, but they are also implicitly forced by touching contexts
that require the value of the placeholder (e.g., the operator
position of call, the test position of if).

In addition to the implicit synchronization performed by
a strict call, OPERA supports two explicit forms of syn-
chronization: barrier synchronization and mutual exclusion.
Barrier synchronization, in the form of synchrons, is ex-
pressed via the synchron, wait, and simul primitives. Mu-
tual exclusion is provided by excludons, first-class locks that
are used in conjunction with the exclusive construct. The
form (exclusive Ejock Epody) evaluates and returns value
of Epody while it holds exclusive access to the lock denoted
by Eiock-

5 Edgar: the Semantics of Opera.

This section sketches our new semantic framework — Fz-
plicit Demand GrAph Reduction (EDGAR) — which we use

2Non-kernel constructs like let, begin, and cond can be defined as
syntactic sugar for kernel constructs.

to formalize the meaning of OPERA programs, particularly
the details of a synchron rendezvous. EDGAR is a graph-
rewriting system that is distinguished from other such sys-
tems by its explicit representation of the flow of demand
through a computation. This feature simplifies the descrip-
tion of OPERA’s concurrency, non-strictness, and synchro-
nization. The EDGAR framework was largely motivated
by the desire to express the rendezvous condition for syn-
chrons in a simple, high-level way. Because of the close tie
between synchrons and automatic storage management, an
important feature of the EDGAR semantics for OPERA is that
it formalizes garbage collection in a way that programmers
can reason about.

5.1 Edgar Overview

The overall structure of the EDGAR framework follows the
recipe for an operational semantics [Plo81]: OPERA pro-
grams are compiled into an initial snapshot (an EDGAR graph-
ical configuration), and transitions are made between snap-
shots in a step-by-step manner according to a collection of
rewrite rules. A sequence of snapshots encountered in con-
secutive transitions is called a trace. A trace from an ini-
tial snapshot to a final snapshot (a snapshot from which no
transitions are possible) is a terminating computation while
an infinite trace starting with an initial snapshot is a non-
terminating computation. Each computation is character-
ized by a fate:

e A non-terminating computation has bottom as its fate.

e A terminating computation whose final snapshot is a
value snapshot has as its fate a result whose value is
determined by the snapshot.

e A terminating computation whose final snapshot is not
a value snapshot has deadlock as its fate.

The behavior of an initial snapshot is the set of all com-
putations that begin with that snapshot. A behavior often
contains numerous computations because transitions may
be non-deterministic (several transitions are possible from a
given snapshot). The outcome of an initial snapshot is the
set of all fates for the computations in its behavior.

Because OPERA supports side effects (data mutation and
I/0), the non-determinism of transitions can lead to an out-
come containing multiple fates. The EDGAR semantics for
full-featured OPERA is clearly not Church-Rosser, but we
suspect Church-Rosser may hold for a functional subset of
OPERA.

The key difference between EDGAR and other graphical
frameworks [Tur79, Pey87, BT87, AA95] is its use of explicit
demand tokens to encode evaluation strategies. EDGAR spec-
ifies evaluation order by annotating some graph edges with
a demand token that indicates where evaluation steps can
take place. The implicit demand propagation implied by
traditional inference rules (e.g., “if asked to evaluate a + ap-
plication, evaluate the left-hand argument”) can be encoded
in EDCGAR as explicit demand propagation steps (e.g. “if the
+ node is annotated with a demand token, propagate a de-
mand token to the left-hand argument”). In the presence

3We have recently learned [Ari96] that the semantics of OPERA
can be expressed in a more traditional graph rewriting system using
graphical contexts similar to those use in [AF94]. Recasting OPERA
semantics in this new form is a future goal.



of explicit demand tokens, a global “reduce any redex” rule
suffices because the details of the evaluation strategy are
already encoded in the graph itself.

EDGAR’s explicit representation of demand was inspired
by the demand tokens used in Gelernter and Jagannathan’s
Ideal Software Machine (ISM) [GJ90], a semantic frame-
work that combines aspects of Petri nets [Pet77] and graph
rewriting. A handful of other systems employ explicit repre-
sentations of demand. Pingali and Arvind describe a mecha-
nism for simulating demand-driven evaluation in a data flow
model; they use data tokens to represent demand [PA85,
PAS8G]. Ashcroft describes a system that combines demand
flow (via entities called questons) with data flow (via entities
called datons) [Ash86].

5.2 Snapshots

A snapshot is a graph consisting of interconnected labelled
nodes. Each node can be viewed as a computational device
that responds to a demand for a value by computing that
value. Every node has a set of labelled input ports that spec-
ify the arguments to the node and a set of labelled output
ports that specify the results of the node. The number of
input ports and output ports is dictated by the label of the
node. Typically, a node has several input ports and one
output port.

A connection between nodes is indicated by a directed
edge from an output port of the source node to an input port
of the target node. Intuitively, an edge is used for a two-step
communication protocol between its source and target ports:
the target port can demand the value from its source port,
and the source port can respond to the demand by returning
a value. Every edge has a state attribute that indicates the
status of this protocol. There are three possible edge states:

e inactive: No demand has yet been made on the edge.

e demanded: A demand has been made on the edge, but
no value has been returned.

e returned: A demand has been made on the edge, and
a value has been returned. The value returned by an
edge in the returned state is defined to be the source
node of the edge; typical values include constants, pro-
cedures, and data structures.

The protocol further dictates that (1) no value can be re-
turned to an edge until one has been demanded and (2)
once an edge is in the returned state, it cannot be used for
further communication. An edge, then, acts as a one-shot
communication fuse that can be used for transmiting a sin-
gle demand and a single value before it is “used up”. This
protocol distinguishes EDGAR from dataflow graph models,
in which edges carry a stream of value tokens.

The demanded state is the key feature of EDGAR that dis-
tinguishes it from traditional graph rewriting systems and
makes it an “explicit demand” model. The returned state
is not essential; it is just a convenient way to designate the
class of value nodes (which could also be specified syntacti-
cally).

Figure 11 is a pictorial representation of a sample snap-
shot in the computation of (7 — 3) + /(7 — 3), where the
sharing of the - node specifies that the difference between
7 and 3 is calculated only once. A unannotated edge is in-
active, an edge with an empty circle is demanded, and an
edge with a filled circle is returned.

Figure 11: A simple snapshot.

In Figure 11, the sink node is a distinguished node that
serves as the primitive source of demand in a computa-
tion. OPERA programs compile into initial snapshots that
are rooted at a sink node. (The compilation process is
straightforward and is not described here.) A final snapshot
is a value snapshot when the input edge to the sink node
is in the returned state. In this case, the source node of the
edge represents the resulting value of the OPERA program.

5.3 Rewrite Rules

Allowable transitions between snapshots are specified by set
of rewrite rules. The rewrite rules dictate the dynamic be-
havior of nodes and the flow of demands and values through
a sequence of snapshots.

A rewrite rule has two parts: a pattern and a replace-
ment. The pattern is a partial graph structure in which
edges may be attached to pattern variables instead of ports.
A pattern is said to match a snapshot if it can be embedded
in the snapshot. The replacement specifies how the snap-
shot structure matched by the pattern should be replaced in
order to construct a new snapshot. For example, Figure 12
shows a simple rewrite rule that propagates demand through
a sqrt node.

A rewrite rule that matches a snapshot can be applied
to the snapshot to yield a new snapshot. Removing the
structure specified by a pattern from a snapshot that it
matches leaves the context of the match. The new snap-
shot is constructed from the context by filling the hole left
by the deleted pattern with the structure specified by the
replacement. The part of the original snapshot that is not
directly matched by the pattern is carried over unchanged
into the new snapshot.

Rewrite rules are required to satisfy the following conti-
nuity conditions:

e All nodes in the pattern must map injectively to sim-
ilarly labelled nodes in the replacement. The replace-
ment can introduce new nodes, but it cannot delete
existing ones.
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Figure 12: A rule that propagates demand through a sqrt
node.

e For each edge whose source and destination ports are
preserved from pattern to replacement, the pattern
state and replacement state must be related by the
communication relation, which formalizes the commu-
nication protocol sketched in Section 5.2. This rela-
tion specifies that the edge state may either (1) stay
the same (2) change from inactive to demanded or (3)
change from demanded to returned.

5.4 Garbage Collection

Rule applications can result in nodes that are inaccessible
from sink and future nodes, which serve as root nodes for
evaluation. A node is inaccessible from a root node if there
is no directed path of edges from the output port of the node
to the input port of the root.

In order to accurately model the space required by a
computation and to avoid spurious deadlocks involving syn-
chrons, it is necessary reclaim inaccessible nodes from a
snapshot. We will assume the existence of a garbage col-
lection function, gec, that maps snapshots to snapshots by
removing any nodes that are not accessible from the root
nodes.

Since rewrite rules cannot delete nodes, garbage collec-
tion is the only mechanism in EDGAR for removing nodes
from a snapshot. Why not allow some forms of garbage col-
lection to be specified in the rules themselves? There are
two reasons:

1. The continuity conditions from Section 5.3 would be
harder to state if all the pattern nodes did not appear
in the replacement.

2. Rules performing garbage collection are tricky to write.
Even if a node appears inaccessible in the replacement
of a rule, it can’t necessarily be deleted because it
might be accessible from a root via edges that don’t
appear in the rule.

5.5 Transitions

In order to collect garbage as soon as possible, a transition
combines a rule application and garbage collection into a
single step. There is a transition between S and gc(S”)
whenever a rule allows snapshot S to be rewritten into S,

This aggressive approach to garbage collection guarantees
that a synchron rendezvous can’t accidentally be blocked by
a non-waiting pointer held by an inaccessible node. This
is a semantic simplification; a practical implementation of
synchrons need not invoke a garbage collector at every eval-
uation step!

In general, it may be possible to make several different
transitions from a given snapshot. In this case, transitions
that rewrite different subgraphs of a snapshot loosely corre-
spond to different threads. Because only one rewrite rule can
be applied per transition, a single transition allows progress
for only one thread.

5.6 Synchron Semantics

Here we briefly discuss the EDGAR rewrite rules that specify
the semantics of synchrons (Figure 13). Space does not per-
mit a presentation of all of OPERA’s rewrite rules; for more
detailed coverage, see [Tur94].

The [synchron-return] rule treats synchron nodes as self-
evaluating values. In English: “If the synchron node has
been demanded, then it is returned to the demander as a
value.”

The [simultaneous] rule ensures that all references to two
unified synchrons point to the same synchron. The labelled
triangles match the set of all edges leaving a node as long
as one of those edges holds a demand token.

The [rendezvous| rule formalizes the rendezvous condi-
tion for synchrons. A synchron output edge that is in the
returned state and attached to a demanded wait node is a
waiting pointer. Any other output edge of a synchron is a
non-waiting pointer. The rendezvous rule is only applica-
ble when all of the output edges of a synchron are waiting
pointers. The [rendezvous] rule returns a constant true node
to all output edges of all the wait nodes participating in the
rendezvous. Since the synchron is necessarily inaccessible
after the [rendezvous] rule, it is garbage collected by the
transition based on this rule. The [rendezvous] rule embod-
ies a proof of the rendezvous condition: every thread that
could ever wait on the synchron is waiting on the synchron.

6 Experience

To experiment with synchrons, we have built a prototype
version of OPERA that directly implements the EDGAR rewrite
rules. In this system, a node maintains the edges of its in-
put and output ports, and an edge maintains its source and
target ports. An application of a rewrite rule mutates the
graph structure appropriately. Rather than performing a
garbage collection (GC) after every transition, a reference-
counting style of GC is supported; when the last output edge
is deleted from a node, the node is reclaimed and its input
edges are also deleted. Due to the possibility of unreclaimed
cyclic structures, it is necessary to perform a reachability-
based GC when memory is exhausted. It is also necessary to
perform a reachability-based GC when no rewrite rules are
applicable; this removes any non-waiting pointers to syn-
chrons that are held by inaccessible cycles and may enable a
rendezvous. If no rewrite rules are enabled by this last case
of GC, the computation is deadlocked.

In a more traditional system, synchrons could be im-
plemented in terms of object finalization. A synchron can
be represented as a mutable cell holding the set of threads
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Figure 13: EDGAR rewrite rules for synchrons.

that are waiting at the barrier. Waiting on a synchron sus-
pends the current thread, inserts it into the set of suspended
threads, and drops the reference to the synchron. When the
synchron becomes inaccessible, a finalization procedure re-
sumes all the suspended threads in the set. simul can be
handled by unioning the thread sets of two synchrons and
sharing the result. It is also necessary to monitor the num-
ber of synchrons that hold the same set; the threads in a set
can only be resumed when the last such synchron is final-
ized. Implementing synchrons in terms of object finaliza-
tion could be prohibitively expensive: programs involving
synchronized lazy aggregates make little progress between
successive rendezvous, and each such rendezvous requires a
full reachability-based GC.

An implementation of synchrons based on reference counts
seems more viable. As in the graph-based implementation,
a reachability-based GC needs to be triggered when mem-
ory is exhausted and when no threads are scheduled. In
a statically-typed language supporting synchrons, reference
counts would only be necessary for structures from which
synchrons could be reached. We plan to experiment with
such a language in the future.

Our prototype implementation includes a graphical pro-
gram animator (the Dynamator) that displays the sequence
of snapshots in a computation. The Dynamator has been in-
valuable for debugging EDGAR rules and OPERA programs.
We plan to use it as a pedagogical tool for teaching pro-
gramming language concepts.

Programming with synchrons is challenging. The main
difficulty is that a thread waiting on a synchron may cause
deadlock by “accidentally” holding a non-waiting pointer to
the synchron. For example, according to the semantics of

OPERA, evaluation of the following expression deadlocks:

(let ((a (cons (synchromn) 17)))
(begin (wait (car a)) (cdr a)))

The variable a, which is live after the wait, holds a non-
waiting pointer to the synchron that prevents a rendezvous.

To avoid such spurious deadlocks, it is helpful to adopt a
style of aggressively unbundling data structures that contain
synchrons. The following is an alternative to the above ex-
ample which the OPERA semantics guarantees will not dead-
lock.

(let ((a (cons (synchromn) 17)))
(let ((b (car a))
(c (cdr a)))
(begin (wait b) c)))

This last example underscores the somewhat disturbing
fact that OPERA does not respect certain forms of substitution-
based reasoning. The rules for when objects become inac-
cessible must be explicit and simple enough so that a pro-
grammer can use them as a basis for reasoning. The OPERA
semantics adopts the liveness and tail-call optimizations de-
scribed in [App92]. These space consumption rules describe
the aggressive reclamation of space in a way that the pro-
grammer can understand at a relatively high level. They
also prevent a correct implementation of OPERA from hold-
ing references to values longer than strictly necessary. For
example, it is incorrect to evaluate (begin (wait b) c) in
an environment that maintains a binding between a and the
pair, because such a binding would lead to a spurious dead-
lock.



Because they push the envelope of our understanding of
GC-dependent features, synchrons may seem unnecessarily
complex. But we believe that synchrons merely highlight
semantic complexities that are intrinsic to GC-dependent
features and even to garbage collection itself. For example,
since synchrons can be implemented in terms of object fi-
nalization, any complex issues in the semantics of synchrons
will also appear in the semantics of object finalization. The
main difference between the features is that object finaliza-
tion is usually considered to be a rare event while a synchron
rendezvous is a common event.

Furthermore, we view these complexities not as an in-
dictment of synchrons, but as evidence that new idioms and
better implementation techniques are needed to use GC-
dependent language mechanisms more effectively. Raw syn-
chrons are powerful but dangerous objects that are not in-
tended for use by casual programmers. But it is possible
to package them into abstractions that are accessible to a
broader audience. We have used OPERA to implement a
suite of sequence and tree operators that can be composed
to yield computations that exhibit fine-grained operational
characteristics of non-modular loops and recursions [Tur94].
As suggested by Section 2.2, synchrons are crucial for achiev-
ing this behavior.

Synchrons and synchronized lazy aggregates are the first
steps in a research program whose purpose is to express algo-
rithms in a modular way while preserving important opera-
tional properties like asymptotic time and space complexity.
Even though concurrency and synchrons seem to be essential
for expressing certain algorithms in a modular fashion, this
does not imply that these features are required for ezecuting
such algorithms. In fact, we suspect that a compiler similar
to Waters’s series compiler [Wat91] should be able to auto-
matically generate efficient sequential monolithic programs
for many algorithms modularly expressed via synchronized
lazy aggregates. Such a compiler would remove all overhead
of concurrency and synchronization, as well as the overhead
associated with packaging and unpackaging intermediate ag-
gregates. Even when it is impossible to remove synchrons
at compile time, synchrons can be replaced by the simpler
barrier /pause barriers when the number of references to a
synchron can be determined statically. It is worth exploring
the expressive power of these restricted forms of synchrons
because they are considerably less expensive to implement
than full-fledged synchrons. Finally, a formal system for
characterizing which combinations of synchronized lazy ag-
gregate operators are safe and which lead to deadlock would
greatly simplify reasoning about such operators.
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