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Cyclic Structures Are Ubiquitous
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Digression: Strictness

Let ⊥ (pronounced “bottom”) stand for a computation which
diverges (e.g., loops infinitely) or signals an error.

A mathematical function is strict in a parameter if the
function returns ⊥ whenever that parameter is ⊥.

Examples:

The + operator is strict in both arguments.

The function f(x,y) = x is strict in the x parameter
but non-strict in the y parameter.
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Digression: Eagerness vs. Laziness
An eager language models all programming language
functions as mathematical functions that are strict in all
parameter positions. E.g., the previous f would be
treated as if it were written:

f(x,y) = (if y == ⊥ then ⊥ else x)

Most programming languages are eager. E.g.: Java, C,
C++, Pascal, Fortran, Scheme, ML, ...

A lazy language models programming language
functions with their “natural” strictness. In particular, all
data constructors are non-strict in all arguments. E.g.:

f(3,(loop)) = 3
length((loop):(loop):[]) = 2

Haskell is an example of a lazy language.
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Cycles Are Tricky To Manipulate

Consider Haskell’s alts = 0:1:alts
10

Naïve generation ⇒ unbounded structures:

let inf x y = x:(inf y x) in inf 2 3

. . .2 3 2 3

map (\ x -> x + 2) alts

Naïve accumulation ⇒ divergence:

foldr (+) 0 alts

foldr Set.insert Set.empty alts

Dependency on language features: laziness, side
effects, node equality, recursive binding constructs, etc.
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Road Map

Viewing cyclic structures as infinite regular trees.

Adapting the tree-generating unfold function to generate
cyclic structures for infinite regular trees.

Adapting the tree-accumulating fold function to return
non-trivial results for strict combining functions and
infinite regular trees.

Cycamores: an abstraction for manipulating regular
trees that we have implemented in ML and Haskell.
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Regular Trees

A tree is regular if it has a finite number of distinct subtrees.

Infinite Regular Trees Infinite Non-regular Trees
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Cyclic Representatives

Finite cyclic graphs denote infinite regular trees.
The same tree may be represented by many finite graphs.

Infinite Regular Tree Some Finite Cyclic Representatives
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Goals

Develop high-level abstractions for creating and
manipulating regular trees that:

efficiently represent regular trees using cyclic graphs;

do not expose the finite representative denoting an
infinite regular tree;

are relatively insensitive to the features of the
programming language in which they are embedded.
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Road Map

Viewing cyclic structures as infinite regular trees.

Adapting the tree-generating unfold function to generate
cyclic structures for infinite regular trees.

Adapting the tree-accumulating fold function to return
non-trivial results for strict combining functions and
infinite regular trees.

Cycamores: an abstraction for manipulating regular
trees that we have implemented in ML and Haskell.
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Tree Generation via Unfold

The unfold operator generates a tree from a generating
function and a seed.

L

S
S

1 k
S

Label

.  .  .
Seed

Generating
  Function

     Seeds 
for Children

unfold : (S→ (L× (Sω)))
︸ ︷︷ ︸

generating function ψ

→ S
︸︷︷︸

seed

→ Tree(L)
︸ ︷︷ ︸

trees over L
︸ ︷︷ ︸

ψ-anamorphism
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Unfold Example 1: Regular Tree

Generating

Function ψ
Tree

n

0 1

n 0
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Unfold Example 1: Regular Tree

Generating

Function ψ
Tree

n

0 1
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0 1
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Unfold Example 1: Regular Tree

Generating

Function ψ
Tree

n

0 1

n

0 1

0 1

0

0 1
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Unfold Example 1: Regular Tree

Generating

Function ψ
Tree

n

0 1

n

0 10 10 10 1

0 01 1

0 1

0
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Unfold Example 1: Regular Tree

Generating

Function ψ
Tree

n

0 1

n

0 10 10 10 1

0 01 1

0 1

0

deps(0, ψ) = {0, 1}
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Unfold Example 2: Non-regular Tree

Generating

Function ψ
Tree

n

n

2n 2n+1
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Unfold Example 2: Non-regular Tree

Generating

Function ψ
Tree
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Unfold Example 2: Non-regular Tree

Generating

Function ψ
Tree

n

n

2n 2n+1

0 1

0 1

0

2 3
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Unfold Example 2: Non-regular Tree

Generating

Function ψ
Tree

n

n

2n 2n+1 0 1

0 1

0 1

0

2 3 4 5 6 7

2 3
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Unfold Example 2: Non-regular Tree

Generating

Function ψ
Tree

n

n

2n 2n+1 0 1

0 1

0 1

0

2 3 4 5 6 7

2 3

deps(0, ψ) = {0, 1, 2, 3, 4, 5, 6, 7, . . .}
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Unfold Lemma

If deps(x, ψ) is finite, then unfold(ψ)(x) is a regular tree.

Converse of this lemma does not hold.

Basis for implementation of unfold that “ties cyclic knots”
for (some) regular trees via memoization on seeds (a la
Hughes’s Lazy Memo Functions, FPCA’85).
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Unfold Implementation: Standard ML

generating fcn.: fun P n = (n,[(n+1) mod 2])

initial seed : 0

unfold  P  0
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Unfold Implementation: Standard ML

generating fcn.: fun P n = (n,[(n+1) mod 2])

initial seed : 0

0

unfold  P  0

NONE

Memo Table 
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Unfold Implementation: Standard ML

generating fcn.: fun P n = (n,[(n+1) mod 2])

initial seed : 0

CycNode(    , [   ])0 0

Memo Table 

unfold  P  0

unfold  P  1

NONE
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Unfold Implementation: Standard ML

generating fcn.: fun P n = (n,[(n+1) mod 2])

initial seed : 0

CycNode(    , [   ])0

1

0

unfold  P  0

unfold  P  1

NONE

NONE

Memo Table 
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Unfold Implementation: Standard ML

generating fcn.: fun P n = (n,[(n+1) mod 2])

initial seed : 0

CycNode(    , [   ])NONE

NONE0

1 1

unfold  P  0

CycNode(    , [   ])0

unfold  P  1

unfold  P  0Memo Table 
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Unfold Implementation: Standard ML

generating fcn.: fun P n = (n,[(n+1) mod 2])

initial seed : 0

CycNode(    , [   ])NONE

NONE0

1 1

unfold  P  0

CycNode(    , [   ])0

unfold  P  1

Memo Table 
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Unfold Implementation: Standard ML

generating fcn.: fun P n = (n,[(n+1) mod 2])

initial seed : 0

0

1

unfold  P  0

NONE

1

CycNode(    , [   ])0

unfold  P  1

SOME(CycNode(    , [   ]))

Memo Table 
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Unfold Implementation: Standard ML

generating fcn.: fun P n = (n,[(n+1) mod 2])

initial seed : 0

0

1

unfold  P  0

1

0

SOME(CycNode(    , [   ]))

CycNode(    , [   ])NONE

Memo Table 
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Unfold Implementation: Standard ML

generating fcn.: fun P n = (n,[(n+1) mod 2])

initial seed : 0

0

1

unfold  P  0

1

0

SOME(CycNode(    , [   ]))

SOME(CycNode(    , [   ]))

Memo Table 
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Unfold Implementation: Standard ML

generating fcn.: fun P n = (n,[(n+1) mod 2])

initial seed : 0

0

1 1

0

SOME(CycNode(    , [   ]))

SOME(CycNode(    , [   ]))

Memo Table 
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Unfold Implementation: Standard ML

generating fcn.: fun P n = (n,[(n+1) mod 2])

initial seed : 0

(       , SOME(CycNode(    , [   ])))

(       , SOME(CycNode(    , [   ])))0

1

231

231

230

0

1

Memo Table 

UID 
Counter
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Unfold Implementation: Discussion

Can use fewer reference cells in SML implementation.

Cyclic hash-consing yields minimal graphs (Mauborgne,
ESOP 2000; Considine & Wells, unpublished).

Haskell implementation:

Uses laziness to tie cyclic knots.
Uses a Cycle monad to thread UID counter and
memoization tables through computation.
Tricky to tie cyclic knots in presence of monad; use
techniques of Erkok and Launchbury (ICFP ’00).

In practice, a memofix function is more flexible than
unfold (see paper).
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Road Map

Viewing cyclic structures as infinite regular trees.

Adapting the tree-generating unfold function to generate
cyclic structures for infinite regular trees.

Adapting the tree-accumulating fold function to return
non-trivial results for strict combining functions and
infinite regular trees.

Cycamores: an abstraction for manipulating regular
trees that we have implemented in ML and Haskell.
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Tree Accumulation via Fold

The fold operator accumulates a result from a tree using a
combining function.

L

1 k

Label

.  .  .

Combining
  Function

Result
R R

R
    Results 
for Children

fold : ((L× (Cres
ω))−cont−−→ Cres)

︸ ︷︷ ︸

accumulating function φ

→ Tree(L)−cont−−→ Cres
︸ ︷︷ ︸

tree valuation θ
(φ-catamorphism)
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Folding over a Finite Tree

Accumulating

Function φ
Tree

n

n . . . n1 k

0

n  + n  + . . . + n  10 k

6

2 5

4
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Folding over a Finite Tree

Accumulating

Function φ
Tree

n

n . . . n1 k

0

n  + n  + . . . + n  10 k

+

++

+6

2 5

4
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Folding over a Finite Tree

Accumulating

Function φ
Tree

n

n . . . n1 k

0

n  + n  + . . . + n  10 k

+

++

+6

2 5

4

4

2
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Folding over a Finite Tree

Accumulating

Function φ
Tree

n

n . . . n1 k

0

n  + n  + . . . + n  10 k

+

++

+6

2 5

4

4

92
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Folding over a Finite Tree

Accumulating

Function φ
Tree

n

n . . . n1 k

0

n  + n  + . . . + n  10 k

+

++

+6

2 5

4

4

92

17

Cycle Therapy, Wellesley CS Dept., Nov 7, 2001 – p.19/33



Folding over an Infinite Regular Tree

0

0

0 1

1

0 1

+

+ +

+ + + +

Expect θ to be φ-consistent: for each subtree t of a given tree,
θ(t) = φ(label(t),map(θ)(children(t))).
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Folding over an Infinite Regular Tree

++

+

++

+

+0

0

0 1

1

0 1
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Folding over an Infinite Regular Tree

0

0

0 1

1

0 1

U

U U

U U U U
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Folding over an Infinite Regular Tree

{0,1}

0

0

0 1

1

0 1

U

{0,1}

U

{0,1}

U

{0,1}

U

{0,1}

U

{0,1}

U

{0,1}

U

This fold may be desirable, but it is not the computed one.
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Folding over an Infinite Regular Tree

0

0

0 1

1

0 1

{0,1,2} {0,1,2}

{0,1,2} {0,1,2} {0,1,2} {0,1,2}

{0,1,2}

U

U U

U U U U

This fold is not computed either.
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Digression: Fixed Points
A value x is a fixed point of a function f if f(x) = x.

What are the fixed points of the following:

fi :: Int -> Int
f1(x) = x/2 + 3
f2(x) = x2

f3(x) = x
f4(x) = x -1

Can also have fixed points over functions manipulating data
structures and other functions:

g :: [Int] -> [Int]
g(x) = 0:1:x

h :: (Int -> Int) -> (Int -> Int)
h(k) = \n -> if n == 0 then 1 else n*(k(n-1))
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Digression: Least Fixed Points

Under certain conditions, functions over data structures and
functions have a so-called least fixed point. In particular,
the function must be a continuous function between two
pointed complete partial orders.

Intuitively, a pointed complete partial order is a lattice
rooted at ⊥ where elements are arranged by
information content and every chain has a limit.

Intuitively, the least fixed point of a function f is found
by starting at ⊥ and applying f until a limit is reached.

For strict f , the least fixed point will always be ⊥.
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Cycfold: Goals
Given a strict combining function φ, want cycfold(φ) that:

Coincides with fold(φ) on finite trees;

Can return a non-trivial result for regular trees;

Diverges on non-regular trees.
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Cycfold: The Idea

Use a result domain Cres that
is a lifted pointed cpo (i.e.,
doubly pointed) and require
the combining function φ to be
strict and monotone.

⊥user

}

user cpo

⊥undef } new bottom

For a given tree t, calculate cycfold(φ)(t) as follows:

If t not regular, return ⊥undef .

Otherwise:

Let tree valuation θ0 map all subtrees of t to ⊥user.
Iteratively calculate θi+1 from θi using φ.
If θk+1 = θk then return θk(t) else return ⊥undef .
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Cycfold Example 1: Node Labels

1

U

U

0

{ }

{ }

· · · · · · · · · · · ·

· · · {0, 1, 2} · · · · · ·

{0, 1} {0, 2} {1, 2} · · ·

{0} {1} {2} · · ·

{}

⊥undef
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Cycfold Example 1: Node Labels

1

U

U

0

{1}

{0}

· · · · · · · · · · · ·

· · · {0, 1, 2} · · · · · ·

{0, 1} {0, 2} {1, 2} · · ·

{0} {1} {2} · · ·

{}

⊥undef

Cycle Therapy, Wellesley CS Dept., Nov 7, 2001 – p.25/33



Cycfold Example 1: Node Labels

1

U

U

0

{0,1}

{0,1}

· · · · · · · · · · · ·

· · · {0, 1, 2} · · · · · ·

{0, 1} {0, 2} {1, 2} · · ·

{0} {1} {2} · · ·

{}

⊥undef
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Cycfold Example 1: Node Labels

1

U

U

0

231

{0,1}

{0,1}

230

· · · · · · · · · · · ·

· · · {0, 1, 2} · · · · · ·

{0, 1} {0, 2} {1, 2} · · ·

{0} {1} {2} · · ·

{}

⊥undef
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Cycfold Example 2: DFA Strings

Node labels can encode other aspects of cyclic data.

10a

b

c

d

(0, False, [’a’,’b’]) (1, True, [’d’,’c’])
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Cycfold Example 2: DFA Strings

(0, False, [’a’,’b’]) (1, True, [’d’,’c’])

U

U

map (’c’ :)

map (’d’ :)

map (’b’ :)

map (’a’ :)

{}

{}

{""}
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Cycfold Example 2: DFA Strings

(0, False, [’a’,’b’]) (1, True, [’d’,’c’])

U

U

map (’c’ :)

map (’d’ :)

map (’b’ :)

map (’a’ :)

{}

{""}

{""}
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Cycfold Example 2: DFA Strings

(0, False, [’a’,’b’]) (1, True, [’d’,’c’])

U

U

map (’c’ :)

map (’d’ :)

map (’b’ :)

map (’a’ :)

{"", c}

{b}

{""}

Cycle Therapy, Wellesley CS Dept., Nov 7, 2001 – p.27/33



Cycfold Example 2: DFA Strings

(0, False, [’a’,’b’]) (1, True, [’d’,’c’])

U

U

map (’c’ :)

map (’d’ :)

map (’b’ :)

map (’a’ :)

{ab, b, bc}

{"", c, cc, db}

{""}
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Cycfold Example 2: DFA Strings

(0, False, [’a’,’b’]) (1, True, [’d’,’c’])

U {aab, ab, abc, b, bc, bcc, bdb}

U{"", c, cc, ccc, cdb, dab, db, dbc}

map (’c’ :)

map (’d’ :)

map (’b’ :)

map (’a’ :)

{""}

Cycle Therapy, Wellesley CS Dept., Nov 7, 2001 – p.27/33



Cycfold: Related Work

Iterative fixed points common in compiler data flow.

Graph folds (Gibbons, unpublished):

ifold = foldtree ◦ untie, analagous to fold.
efold analagous to cycfold.

Catamorphisms over datatypes with embedded
functions (Fegaras & Sheard, POPL’96):

Express cycles via embedded functions. E.g.,
val alts = Rec(fn x => Cons(0,(Cons 1 x)))

Can express catamorphisms over such cycles (e.g.,
map), but these can expose the structure of the
representative.
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Road Map

Viewing cyclic structures as infinite regular trees.

Adapting the tree-generating unfold function to generate
cyclic structures for infinite regular trees.

Adapting the tree-accumulating fold function to return
non-trivial results for strict combining functions and
infinite regular trees.

Cycamores: an abstraction for manipulating regular
trees that we have implemented in ML and Haskell.
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Cycamores

Cycamore(L) is the type of potentially cyclic graphs, with a
hidden UID for each node, parameterized over label type.

Examples:

0 1

0 1

0 0

231

230

251 17

6 821

Key operations: make, view, unfold, fold, cycfold.

Other operations: cycfix, memofix (see paper).

Implementations in Standard ML and Haskell.
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Cycamore Signatures 1
Standard ML Haskell

val make : make ::

(’a * ’a Cycamore list) label/kids pair (a, [Cycamore a])

-> ’a Cycamore result cycamore -> Cycle s (Cycamore a)

val view : view ::

’a Cycamore given cycamore Cycamore a

-> (’a * ’a Cycamore list) label/kids pair -> (a, [Cycamore a])

val unfold : unfold ::

order class Ord a =>

’a MemKey memo key fcn.

-> (’a -> (’b * ’a list)) generating fcn. (a -> (b, [a]))

-> ’a seed -> a

-> ’b Cycamore result cycamore -> Cycle s (Cycamore b)
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Cycamore Signatures 2

Standard ML Haskell
val fold : fold ::

(’b -> (’a list) -> ’a) combining fcn. (b -> [a] -> a)

-> (’b Cycamore) cycamore -> (Cycamore b)

-> ’a result a

val cycfold : cycfold ::

partial order class (POrd a) =>

’a user bottom a

-> ((’a * ’a) -> bool) geq

-> (’b -> (’a list) -> ’a) combining fcn. -> (b -> [a] -> a)

-> (’b Cycamore) cycamore -> (Cycamore b)

-> ’a result -> a
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Future Work

Theory:
Non-strict combining functions with cycfold.
Can cycfold return a cycamore?
Version of fold based on greatest fixed points.

Practice:
Avoiding single-threaded UID generation.
Memoization strategies.
cycfold implementation heuristics.
Cyclic hash-consing experimentation.

Extending ML/Haskell with general cyclic data types.
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