Cycle Therapy A Prescription for Fold and Unfold on Regular Trees

Franklyn Turbak

J. B. Wells

Wellesley College

Heriot-Watt University

Cyclic Structures Are Ubiquitous

Digression: Strictness

Let \perp (pronounced "bottom") stand for a computation which diverges (e.g., loops infinitely) or signals an error.

A mathematical function is *strict* in a parameter if the function returns \perp whenever that parameter is \perp .

Examples:

- The + operator is strict in both arguments.
- The function f(x,y) = x is strict in the x parameter but non-strict in the y parameter.

Digression: Eagerness vs. Laziness

An eager language models all programming language functions as mathematical functions that are strict in all parameter positions. E.g., the previous £ would be treated as if it were written:

 $f(x,y) = (if y == \bot then \bot else x)$

Most programming languages are eager. E.g.: Java, C, C++, Pascal, Fortran, Scheme, ML, ...

A lazy language models programming language functions with their "natural" strictness. In particular, all data constructors are non-strict in all arguments. E.g.:

f(3,(loop)) = 3
length((loop):(loop):[]) = 2

Haskell is an example of a lazy language.

Cycles Are Tricky To Manipulate

Consider Haskell's alts = 0:1:alts

• Naïve generation \Rightarrow unbounded structures:

• let
$$inf x y = x:(inf y x)$$
 in $inf 2 3$

0

• map $(\setminus x \rightarrow x + 2)$ alts

- Naïve accumulation \Rightarrow divergence:
 - foldr (+) 0 alts
 - foldr Set.insert Set.empty alts
- Dependency on language features: laziness, side effects, node equality, recursive binding constructs, etc.

Road Map

- Viewing cyclic structures as infinite regular trees.
- Adapting the tree-generating unfold function to generate cyclic structures for infinite regular trees.
- Adapting the tree-accumulating fold function to return non-trivial results for strict combining functions and infinite regular trees.
- Cycamores: an abstraction for manipulating regular trees that we have implemented in ML and Haskell.

Regular Trees

A tree is *regular* if it has a finite number of distinct subtrees.

Cyclic Representatives

Finite cyclic graphs denote infinite regular trees. The same tree may be represented by many finite graphs.

Goals

Develop high-level abstractions for creating and manipulating regular trees that:

- efficiently represent regular trees using cyclic graphs;
- do not expose the finite representative denoting an infinite regular tree;
- are relatively insensitive to the features of the programming language in which they are embedded.

Road Map

- Viewing cyclic structures as infinite regular trees.
- Adapting the tree-generating unfold function to generate cyclic structures for infinite regular trees.
- Adapting the tree-accumulating fold function to return non-trivial results for strict combining functions and infinite regular trees.
- Cycamores: an abstraction for manipulating regular trees that we have implemented in ML and Haskell.

Tree Generation via Unfold

The unfold operator generates a tree from a generating function and a seed.

Unfold Lemma

If deps (x, ψ) is finite, then unfold $(\psi)(x)$ is a regular tree.

- Converse of this lemma does not hold.
- Basis for implementation of unfold that "ties cyclic knots" for (some) regular trees via memoization on seeds (a la Hughes's *Lazy Memo Functions*, FPCA'85).

generating fcn.: fun P n = (n,[(n+1) mod 2])
initial seed: 0

unfold P 0

Unfold Implementation: Discussion

- Can use fewer reference cells in SML implementation.
- Cyclic hash-consing yields minimal graphs (Mauborgne, ESOP 2000; Considine & Wells, unpublished).
- Haskell implementation:
 - Uses laziness to tie cyclic knots.
 - Uses a Cycle monad to thread UID counter and memoization tables through computation.
 - Tricky to tie cyclic knots in presence of monad; use techniques of Erkok and Launchbury (ICFP '00).
- In practice, a memofix function is more flexible than unfold (see paper).

Road Map

- Viewing cyclic structures as infinite regular trees.
- Adapting the tree-generating unfold function to generate cyclic structures for infinite regular trees.
- Adapting the tree-accumulating fold function to return non-trivial results for strict combining functions and infinite regular trees.
- Cycamores: an abstraction for manipulating regular trees that we have implemented in ML and Haskell.

Tree Accumulation via Fold

The fold operator accumulates a result from a tree using a combining function.

Expect θ to be ϕ -consistent: for each subtree t of a given tree, $\theta(t) = \phi(\text{label}(t), \text{map}(\theta)(\text{children}(t))).$

This fold may be desirable, but it is not the computed one.

This fold is not computed either.

Digression: Fixed Points

A value x is a *fixed point* of a function f if f(x) = x.

What are the fixed points of the following:

 f_i :: Int -> Int $f_1(x) = x/2 + 3$ $f_2(x) = x^2$ $f_3(x) = x$ $f_4(x) = x - 1$

Can also have fixed points over functions manipulating data structures and other functions:

Digression: Least Fixed Points

Under certain conditions, functions over data structures and functions have a so-called *least fixed point*. In particular, the function must be a *continuous function* between two *pointed complete partial orders*.

- Intuitively, a pointed complete partial order is a lattice rooted at ⊥ where elements are arranged by information content and every chain has a limit.
- Intuitively, the least fixed point of a function f is found by starting at \perp and applying f until a limit is reached.
- For strict f, the least fixed point will always be \bot .

Cycfold: Goals

Given a strict combining function ϕ , want cycfold(ϕ) that:

- Coincides with $fold(\phi)$ on finite trees;
- Can return a non-trivial result for regular trees;
- Diverges on non-regular trees.

Cycfold: The Idea

Use a result domain C_{res} that is a *lifted* pointed cpo (i.e., doubly pointed) and require the combining function ϕ to be strict and monotone.

For a given tree *t*, calculate $cycfold(\phi)(t)$ as follows:

- If t not regular, return \perp_{undef} .
- Otherwise:
 - Let tree valuation θ_0 map all subtrees of t to \perp_{user} .
 - Iteratively calculate θ_{i+1} from θ_i using ϕ .
 - If $\theta_{k+1} = \theta_k$ then return $\theta_k(t)$ else return \perp_{undef} .

Node labels can encode other aspects of cyclic data.

Cycfold: Related Work

- Iterative fixed points common in compiler data flow.
- Graph folds (Gibbons, unpublished):
 - ifold = foldtree untie, analagous to fold.
 - efold analagous to cycfold.
- Catamorphisms over datatypes with embedded functions (Fegaras & Sheard, POPL'96):
 - Express cycles via embedded functions. E.g.,
 val alts = Rec(fn x => Cons(0,(Cons 1 x)))
 - Can express catamorphisms over such cycles (e.g., map), but these can expose the structure of the representative.

Road Map

- Viewing cyclic structures as infinite regular trees.
- Adapting the tree-generating unfold function to generate cyclic structures for infinite regular trees.
- Adapting the tree-accumulating fold function to return non-trivial results for strict combining functions and infinite regular trees.
- Cycamores: an abstraction for manipulating regular trees that we have implemented in ML and Haskell.

Cycamore(L) is the type of potentially cyclic graphs, with a hidden UID for each node, parameterized over label type.

Examples:

- Key operations: make, view, unfold, fold, cycfold.
- Other operations: cycfix, memofix (see paper).
- Implementations in Standard ML and Haskell.

Cycamore Signatures 1

Standard ML		Haskell	
val make :		make ::	
('a * 'a Cycamore list)	label/kids pair	(a, [Cycamore a])	
-> 'a Cycamore	result cycamore	-> <mark>Cycle s</mark> (Cycamore a)	
val view :		view ::	
'a Cycamore	given cycamore	Cycamore a	
-> ('a * 'a Cycamore list)	label/kids pair	-> (a, [Cycamore a])	
val unfold :		unfold ::	
	order class	Ord a =>	
'a MemKey	memo key fcn.		
-> ('a -> ('b * 'a list))	generating fcn.	(a -> (b, [a]))	
-> 'a	seed	-> a	
-> 'b Cycamore	result cycamore	-> Cycle s (Cycamore b)	

Cycamore Signatures 2

Standard ML		Haskell
val fold :		fold ::
('b -> ('a list) -> 'a)	combining fcn.	(b -> [a] -> a)
-> ('b Cycamore)	cycamore	-> (Cycamore b)
-> 'a	result	а
val cycfold :		cycfold ::
	partial order class	(POrd a) =>
'a	user bottom	а
-> (('a * 'a) -> bool)	geq	
-> ('b -> ('a list) -> 'a)	combining fcn.	-> (b -> [a] -> a)
-> ('b Cycamore)	cycamore	-> (Cycamore b)
-> 'a	result	-> a

Future Work

- Theory:
 - Non-strict combining functions with cycfold.
 - Can cycfold return a cycamore?
 - Version of fold based on greatest fixed points.
- Practice:
 - Avoiding single-threaded UID generation.
 - Memoization strategies.
 - cycfold implementation heuristics.
 - Cyclic hash-consing experimentation.
- Extending ML/Haskell with general cyclic data types.