Work 1n Progress:
Identifying and Analyzing Original Projects in an
Open-Ended Blocks Programming Environment

Franklyn Turbak, Eni Mustafaraj, and Maja Svanberg
Computer Science Department, Wellesley College

Wellesley, Massachusetts, USA

Email: {fturbak,emustafa,msvanber} @wellesley.edu

Abstract—Tens of millions of people have used online blocks
programming environments like App Inventor to learn how
to program and build personally meaningful programs and
apps. We want to improve blocks programming environments
and pedagogies by using learning analytics to identify common
problems and then address them. For most users, there is no
information about which projects are original (built from scratch
by individuals or groups based on their own ideas and current
programming skills) vs. unoriginal (based on tutorials, class
exercises, etc.). To understand what App Inventor users are
learning and what misconceptions they have, we need to filter
out unoriginal projects and focus on original ones.

Here we describe two key aspects of our work in progress
towards this goal. First, we have developed feature-vector rep-
resentations of App Inventor projects that formalize a notion of
structural similarity between them. This representation facilitates
filtering out unoriginal work like tutorials and can be used
within a group of learners to distinguish classroom activities from
original projects. Second, we have developed a graph clustering
technique based on project creation timestamps to discover
groups of App Inventor users that appear to be taking a course
together — essential information for distinguishing original vs.
unoriginal work that is not explicitly represented in our datasets.

I. INTRODUCTION

In blocks programming environments, programs are as-
sembled out of fragments shaped like jigsaw puzzle pieces.
Because they lower barriers to programming [1], these en-
vironments, which include App Inventor, Scratch, Snap!,
Blockly, Pencil Code, and Alice, have become popular ways
for beginners to learn programming concepts and for casual
programmers like scientists and hobbyists to write programs.

For example, MIT App Inventor democratizes mobile app
creation by empowering those without previous programming
or app-building experience to build their own apps [2]. In App
Inventor, an Android mobile app can be created in two stages
in an online browser-based visual programming environment.
First, the user interface components (e.g., buttons, labels, text
boxes, images, canvases) and functional components (e.g.,
camera, sound recorder, GPS location sensor, speech-to-text
converter, speech recognizer) of the app can be configured

DOI reference number: 10.18293/DMSVLSS2017-021

Michael Dawson
Independent Researcher
Waltham MA, 02451, USA
Email: mijoda@gmail.com

using a drag-and-drop editor. Second, the behavior of the
app is specified by connecting visual blocks that correspond
to abstract syntax tree nodes in a traditional programming
language. Some blocks represent events, conditions, or actions
for a particular app component (e.g., the button has been
pressed, take a picture with the camera) while others represent
standard programming concepts (variable getters and setters,
conditionals, loops, procedures, lists, etc.) Nearly 5 million
registered App Inventor users have created over 19 million
apps, and there are over 350 thousand active monthly users.

Since 2009, the first two authors have used App Inventor in
numerous introductory courses, faculty workshops, and other
activities. In our experience, App Inventor does lower barriers
to making mobile apps. But users often have trouble making
their apps work as desired. Some problems are rooted in
computational thinking bugs. For example, the state variables
of a loop are often improperly initialized in a way that allows it
to behave correctly the first time it is run but not on subsequent
runs. Working aspects of an app can be implemented in overly
complex and roundabout ways. App Inventor programmers
often make multiple copies of existing blocks and screens in
situations where abstraction mechanisms like procedures and
screen templates filled by data would avoid such duplication.

Our long-term goal is to use learning analytics to iden-
tify difficulties encountered by blocks programmers and to
alleviate these difficulties by improving the programming
environments and their associated pedagogies. Towards this
goal, we are currently analyzing two datasets of App Inventor
users collected in the 27 months between Dec. 2013 and Feb.
2016: all projects of 10 thousand randomly chosen users, and
all projects of the 46,320 so-called prolific users, who have
created 20 or more projects.

The open-ended nature of App Inventor and lack of in-
formation about its users presents many challenges for our
research. App Inventor collects no demographic data on users
other than what is provided in an optional survey completed
by only a small percentage of users. For most users, we
have no information on their gender, age, geographic location,
programming background, etc. App Inventor accounts and
projects normally have an email address, but these have been

removed from our two large datasets as part of deidentifying
them. Importantly, there is no information associated with
users or projects that explicitly indicates whether a user took
an App Inventor course or whether a project was created as
part of a course or other coordinated activity.

In order to understand conceptual difficulties with App
Inventor, we want to distinguish original projects, in which
users create a project from scratch or significantly enhance
an existing project based on their own ideas and current
programming skills, from unoriginal projects, in which users
create a project by following the steps of an online tutorial
or a guided classroom exercise. We make this distinction for
two reasons: (1) filtering out the unoriginal projects of users
lets us focus on their skill progression and the misconceptions
they have when building original projects; and (2) we can
see whether constrained activities like tutorials and classroom
exercises involving a particular concept help users with that
concept in subsequent open-ended activities.

II. FEATURE VECTORS FOR APP INVENTOR PROJECTS

When applying a learning analytics lens to how users learn
and use App Inventor, it is helpful to formalize a notion
of structural similarity between their mobile app projects.
This notion facilitates filtering out unoriginal work like tuto-
rials when analyzing projects for computational thinking and
promises to be more effective than attempts (e.g., in [3]) based
on project names.

One way to determine structural similarity between two App
Inventor programs is to focus on their abstract syntax trees, and
measure (1) which nodes appear in both trees and (2) which
parent-child relationships appear in both trees. This is the
basis of the particle analysis method developed by Sherman
for determining how far away a student’s project is from
a known desired solution [4]. However, comparing parent-
child relationships between two trees is expensive, leading
to structural comparisons that are likely to be too slow for
analyzing datasets involving millions of programs.

Instead, we represent App Inventor projects as feature
vectors, where features include the types of components and
blocks used in the program. (App Inventor has dozens of
components and over a thousand types of blocks, though a
typical program uses only a small subset of these.) Using
feature vectors has the advantage that we can leverage standard
Python data analysis libraries to determine similarity between
projects by calculating distances between vectors. We are still
experimenting with various dimensions of this feature vector
representation to find the one that best suits our needs. For
example: should the features include both component and
block types or just block types (since the blocks themselves
sometimes contain component information)? Do we simply
care whether a feature is present or not, or do we want
frequency counts for each feature? Should we give less weight
to more common features (known as ferm frequency—inverse
document frequency (TF-IDF) in the information retrieval
literature)? What is the best way to measure distances between
feature vectors in n-dimensional space? So far our experiments

indicate that the generalized Jaccard metric (which divides the
intersection of feature frequencies by their union) is better than
the Euclidean and Manhattan distance metrics.

We have used the feature vector representation of App
Inventor projects as the basis for hierarchically clustering the
902 projects created by 16 students in an App Inventor CSO
course at our institution [5]. These clusters provide a way
to automatically distinguish original from unoriginal projects
in a class setting. When projects done by many students
are clustered closely together, we consider these projects
to be unoriginal classroom activities. Projects dissimilar to
other projects are considered original, as are projects of a
single student or pairs of students that are clustered closely
together (because they are likely to be different versions of
original individual or pair projects). The automatic original vs.
unoriginal categorization of projects by our algorithm closely
matched the manual labelings we had given them.

III. DISCOVERING COURSES OF APP INVENTOR USERS

The hierarchical clustering technique described above for
distinguishing unoriginal classroom activities from original
projects requires knowing which users were taking a course
together. But in our App Inventor user datasets, there is no
explicit information about which users might be associated
with a course. Nevertheless, projects do carry a timestamp
indicating when they were created. We have developed a
graph clustering technique for co-occurring temporal events
that leverages these timestamps to discover groups of users
who appear to be taking the same course.

The key assumption underlying our technique is that stu-
dents in a course are physically co-located in a classroom,
receiving instruction from an instructor, who often guides
students in creating a project within a relatively short time
interval. If two users create a project around the same time,
this is evidence that they might be in the same course, but it is
not conclusive since this can happen by chance. But because
courses are typically taught over many weeks or months,
there are many opportunities for classmates to create programs
around the same time, and two users who share many project
creation times are likely to be taking a course together.

In one test of our technique, we selected the subset of the
prolific users who created their first project between Aug 15
and Sep 15, 2015. This Falll5 group contained 6012 users.
To find co-occurring events, pairs of project timestamps and
users were created and stored into a single list that was
sorted by the temporal information. Then time windows of
plus/minus five minutes were pivoted on every list item to
find the co-occurring projects in the interval. This information
was used to create graphs in which the nodes are users,
edges indicate that two users created at least one co-occurrent
project, and edge weights represent the frequency of co-
occurrences. After experimenting with raw frequencies, we
decided to use proportional frequencies that take into account
the total number of projects created by a user. The Falll5
graph was large (2,005,796 edges) even though we left out
users who were using the system but were not part of the

L]
L3
[]
@
®

Fig. 1. Eleven clusters, all with 18 members, discovered for the Falll5 data.
The cluster colored in red corresponds to the user accounts for all students
in a course taught by the first author.

Falll5 group. After several experiments, we decided to filter
out edges with five or less co-occurrences, given that students
in our courses had 15 to 25 co-occurrences in a semester.

After the filtering process, we use the MCL graph clustering
algorithm [6] on the Falll5 graph. This found 462 clusters,
which varied in size from 1 to 84 nodes. Figure 1 depicts
eleven of these clusters, all of size 18. We show these
particular clusters, because one of them belongs to a course
taught by the first author. This cluster (in red, top most-left)
correctly contains all 16 registered students in the class, the
one auditor sitting in on the class, and a previously unknown-
to-us private account used by one of the students (the lonely
node trailing the cluster).

IV. CURRENT STATUS AND FUTURE WORK

We are fine-tuning the choices for project feature vectors
and similarity metric in the context of identifying projects
in our datasets that appear to be created by following online
tutorials. We plan to manually label several hundred projects
by their tutorial status, and determine choices that maximize
the correct identification. We will then identify tutorials in
both our random and prolific datasets and compare some basic
statistics between them. E.g., does one group have a higher
percentage of tutorial projects than another? Are some tutorials
more popular in one dataset than another?

We are also investigating extending our Falll5 course dis-
covery experiment to our entire prolific dataset, and developing
ways to verify that the clusters correspond to users taking
a course together. A preliminary analysis shows that co-
occurring projects within a cluster tend to occur at regular
weekly times, bolstering the conclusion that they were created
in a course held at these times. We also plan to measure the
similarity of the co-occurring projects.

Once we have discovered courses for our prolific dataset,
we will use hierarchical clustering to categorize projects that
appear to be classroom activities. After filtering out tutorials
and classroom exercises, we will be left with original projects
that will form the basis of our learning analytics work. One

form of unoriginality we do not know how to handle is
determining whether any user projects are based on projects
from the App Inventor Gallery, a collection of projects shared
by members of the user community.

In our analysis of original projects, we plan to build upon
the work of Xie and Abelson [7] to study the skill progres-
sion of users in their App Inventor projects. We also plan
to investigate misconceptions and poor programming style,
and see whether these improve over time or are affected
by previously completed tutorials and classroom activities.
In particular, we will study the usage of App Inventor’s
abstraction mechanisms (procedures, lists, loops, and generic
components), which preliminary observations indicate are used
surprisingly infrequently, even among prolific users.

As part of our work, we will develop algorithms to de-
tect common bugs and lack of abstraction in App Inventor
programs. We later plan to integrate such detection algorithms
within the App Inventor environment itself to provide feedback
directly to users about ways to improve their programs. Such
detection algorithms could also be used within a teacher
dashboard for App Inventor (such as the one sketched in [4])
to highlight students who need help with their code.

We have seen that prolific users may have several similar
original projects that appear to be different versions of the
same project. We suspect these projects are manual backups
of a single project made by users who fear losing their work.
We can use hierarchical clustering on a user’s original projects
to find such versions and see how common this “manual
versioning” is in practice. Currently, no history is recorded
for App Inventor projects indicating how they evolve over
time (though Sherman has developed a fine-grained recording
mechanism that may be integrated into App Inventor in the
future [4]). So a sequence of versions could provide a useful
coarse-grained window on the history of certain projects.

ACKNOWLEDGMENTS

This work was supported by Wellesley College Faculty
Grants and by the National Science Foundation under grant
DUE-1226216.

REFERENCES

[1] D. Bau, J. Gray, C. Kelleher, J. S. Sheldon, and F. Turbak, “Learnable
programming: Blocks and beyond,” Communications of the ACM, 2017,
to appear.

[2] D. Wolber, H. Abelson, and M. Friedman, “Democratizing computing
with App Inventor,” GetMobile: Mobile Computing and Communications,
vol. 18, no. 4, pp. 53-58, Jan. 2015.

[3] B. Xie, I. Shabir, and H. Abelson, “Measuring the usability and capability
of App Inventor to create mobile applications,” in 3rd International
Workshop on Programming for Mobile and Touch, 2015, pp. 1-8.

[4] M. Sherman, “Detecting student progress during program activities by
analyzing edit operations on their blocks-based programs,” Ph.D. disser-
tation, University of Massachusetts Lowell, Apr. 2017.

[5] E. Mustafaraj, F. Turbak, and M. Svanberg, “Identifying original projects
in App Inventor,” in Proceedings of the 30th International FLAIRS
Conference, May 2017.

[6] S. van Dongen, “Graph clustering by flow simulation,” Ph.D. dissertation,
University of Utrecht, May 2000.

[7]1 B. Xie and H. Abelson, “Skill progression in MIT App Inventor,” in IEEE
Symposium on Visual Languages and Human-Centric Computing, 2016,
pp. 213-217.

