
Improving the Usability of App Inventor

through Conversion between Blocks and Text

Karishma Chadha

April 25, 2014

Abstract

In blocks programming, users compose programs by combining visual frag-

ments (blocks) shaped like jigsaw-puzzle pieces. The shapes suggest how the

blocks fit together, reducing syntactic frustrations experienced by novices

when learning textual programming. MIT App Inventor 2 (AI2), a popular

online environment for Android app development, democratizes program-

ming through its easy-to-use blocks language. However, while simple blocks

programs are easy to read and write, complex ones become overwhelming.

Creating and navigating nontrivial blocks programs is tedious, and AI2’s cur-

rent inability to copy blocks between projects inhibits reusing blocks code or

sharing blocks code with others.

To address these issues, I have created a new textual language, TAIL,

that is isomorphic to AI2’s blocks language and provided a means for con-

verting between them. TAIL syntax is designed to provide users with a

systematic way to translate the visual information on the blocks into text.

I have extended AI2 with a set of code blocks (for expressions, statements,

and top-level declarations) in which users can type TAIL code representing

AI2 blocks. These code blocks have the same meaning as the larger block

assemblies they represent. Programmers can also convert back and forth be-

i

tween these code blocks and the original AI2 blocks. Language isomorphism

guarantees that a round-trip conversion (from text to blocks and back, or

blocks to text and back) begins and ends with the identical program.

To implement the TAIL language, I wrote a grammar for the ANTLR

parser generator to generate a JavaScript lexer and parser for TAIL. I use

actions in the grammar to translate the TAIL parse tree into AI2’s XML tree

representation for blocks.

This project aims to (1) increase AI2’s usability by providing an efficient

means for reading, constructing, sharing, and reusing programs, and (2) ease

users’ transitions from blocks programming to text programming.

ii

Contents

Chapter 1 Introduction 1

1.1 Blocks Programming Languages 1

1.2 MIT App Inventor . 3

1.3 Limitations in App Inventor 6

1.3.1 Writing Complex Programs 6

1.3.2 Reading and Searching Programs 7

1.3.3 Reusing or Sharing Programs 8

1.4 One Solution to Fix them All 9

1.5 Road Map . 14

Chapter 2 Related Work 15

2.1 Scratch . 16

2.1.1 Scratch Project Summary 16

2.1.2 ScratchBlocks . 17

2.2 Blockly . 20

2.3 PicoBlocks . 21

2.4 SLASH . 24

2.5 Cabana . 26

iii

2.6 Previous Work on Blocks & Text Conversion in App Inventor 26

2.6.1 The Java Bridge . 27

2.6.2 Rendering Android App Inventor Code Blocks as Pseudo-

Python Code . 28

2.6.3 Venthon: A First Take at a Creating a New Textual

Language for App Inventor 28

2.7 Code to Blocks . 33

Chapter 3 TAIL Language Design 35

3.1 Design Principles . 35

3.1.1 Language Isomorphism 35

3.2 Easy Transition to TAIL . 41

3.2.1 TAIL Syntax . 41

Chapter 4 Integrating into App Inventor & Creating the TAIL

Language 49

4.1 Architecture . 49

4.1.1 Description of AI2 Architecture 49

4.1.2 Extending AI2 with TAIL Code Blocks 50

4.1.3 Blocks to Text Converter 54

4.1.4 Creating TAIL . 57

4.2 Implementation of TAIL & Text to Blocks Conversion 60

4.2.1 What is a Parser Generator? 60

4.2.2 Lexing with ANTLR 61

4.2.3 Parsing with ANTLR 62

4.2.4 Tree Conversion with ANTLR 64

iv

Chapter 5 Conclusion and Future Work 67

5.1 Current State . 67

5.2 Immediate Future . 68

5.2.1 Adding all AI2 Blocks to the TAIL Grammar 68

5.2.2 Creating YAIL Generators for Statements and Decla-

rations . 70

5.3 Near Future . 71

5.3.1 User Studies . 71

5.3.2 Changing Conversion Architecture to Improve Perfor-

mance . 72

5.3.3 Converting Screens, Workspaces, and Entire Projects . 73

5.3.4 Making Text Readable 75

5.3.5 Generalizing TAIL Grammar Rules 76

5.3.6 Adding Language Abbreviations 76

5.3.7 Improving Error Handling 78

5.3.8 Creating Tutorials & Documentation for AI2 Users . . 78

5.4 Far Future . 78

5.4.1 Venthon, Venti, and More! 79

5.4.2 TAIL Text Editor . 79

5.4.3 Blocks Language for Existing Text Language 79

5.4.4 Interactive Environment to Edit Corresponding Blocks

and Text Languages Side-By-Side 80

v

Chapter 1

Introduction

1.1 Blocks Programming Languages

In blocks programming languages, users compose programs by combining vi-

sual program fragments shaped like jigsaw-puzzle pieces (blocks). The shapes

of the blocks strongly suggest how they should fit together, thereby reducing

common syntax errors experienced by novices when learning to program in

a textual language. Blocks are usually chosen from a collection (see discus-

sion of drawers in Section 1.2) which are often categorized by the type of

functionality the blocks provide. These collections are often visually similar

in some way. In many programming languages, blocks belonging to different

collections are often distinguished by different colors (i.e. all the blocks per-

taining to a single collection will be the same color, but a different color from

blocks of a different collection). This means that users do not necessarily

have to recall names of blocks by memory, but rather can recognize them by

color. Blocks also contain other useful visual information which is not nec-

1

essarily readily available in textual programming languages. For example,

blocks expecting other blocks as inputs often have labels indicating what in-

put they are expecting. Even more simply useful visual information is that,

at the very least, users will have an idea of how many inputs a block takes

based on the shape of the block (i.e. the number of sockets the block has;

see Section 3.2.1 for an explanation of sockets). For all of these and many

more reasons, blocks programming languages are a powerful tool for lowering

the barriers to learning computer science. With these programming environ-

ments, novices can focus on learning the concepts, thinking, and problem

solving skills associated with computer science principles rather than being

hindered by the frustrations of syntax errors that differ in each language.

Blocks programming languages have become quite popular in recent years.

Many such languages have arisen such as: Scratch [Scra], an online environ-

ment to create games and animations; PicoBlocks [Pic], an environment to

program mini-computers to use with physical LEGO [Leg] blocks; Blockly

[Bloa], a blocks language framework that has been used to create numerous

blocks-based microworlds, including the incredibly popular Hour of Code

[Hou] microworlds; and MIT App Inventor [Ai1a; Ai2a], an online environ-

ment to develop mobile applications for Android devices.

Other blocks languages that are worth mentioning, but not discussed in

this paper are StarLogo TNG [Staa], StarLogo Nova [Stab], Tynker [Tyn],

and Hopscotch [Hop].

2

1.2 MIT App Inventor

MIT App Inventor began as a Google project that is now being developed

and maintained in the MIT Media Lab as part of the Center for Mobile

Learning. It has gained wide popularity in recent years, reaching over 1.5

million users worldwide [Ai1b; Ai2b]. App Inventor aims to democratize

programming through its easy to use blocks programming language, and by

removing much of the overhead of the Android SDK, so that even those who

are not familiar with programming can easily build Android applications.

MIT App Inventor has gone through two major iterations, App Inventor

Classic (AI1) [Ai1a] and App Inventor 2 (AI2) [Ai2a]. The overarching

design of both iterations is the same. The tool consists of two parts, the

Designer (Figure 1.1) and the Blocks Editor (Figure 1.2).

Figure 1.1: The Designer window for AI2

The Designer is responsible for creating the look of the application as

well as defining any components the application will use. A component can

3

be a visual part of the application (such as a button or a text box), or a

non-visual part of the application responsible for communicating with the

device’s hardware (such as a timer, or interfaces interacting with the device’s

camera or location sensor).

Figure 1.2: The Blocks Editor window for AI2

The Blocks Editor is the environment in which users can program the

functionality of the components they have added to their application (using

the Designer). The Blocks Editor uses a blocks programming language for

users to code their applications. The blocks programming language used in

AI1 was based on the MIT Open Blocks framework [Ope], a Java library

created as part of the MIT STEP program for defining blocks programming

languages. The second iteration of App Inventor (AI2) uses a blocks pro-

gramming language designed in JavaScript using Blockly, being developed at

4

Google.

Both iterations of the Blocks Editor (and many other blocks programming

environments) use the simple design of drawers of blocks, and a "workspace".

In App Inventor, there is a list of drawers on the left hand side of the Blocks

Editor and a blank area on the right hand side for users to construct their

programs. The drawers are organized in categories based on what kind of

functionality they provide (control, math, lists, variables, etc.).

The blocks are different colors (colored by the colors of their drawer)

so that they are easier to visually identify and distinguish from one another.

Users drag blocks they want to use from these drawers out into the workspace

to compose their programs. Figure 1.3 shows some simple constructions of

blocks.

Figure 1.3: Simple Blocks Constructions

App Inventor programs, called projects consist of several screens defined

in the Designer. Each screen has a set of components (also defined in the

Designer) and a blocks program (defined in the Blocks Editor).

5

1.3 Limitations in App Inventor

App Inventor is a low-barrier tool for users of all backgrounds to write An-

droid applications. However, App Inventor has a few key limitations.

1.3.1 Writing Complex Programs

Blocks programing languages are easy to learn, and users are able to create

programs quickly in these languages. However, while it is easy and quick to

write simple programs, it becomes increasingly tedious and time consuming

to construct more complex programs. For some users, it may prove to be

easier and faster to type text than to click, drag, and connect blocks together.

Complex programs quickly become inefficient to create. Functions as simple

as the quadratic formula, half of which is depicted in Figure 1.4, use many

blocks (note that Figure 1.4 uses collapsed variable reference blocks; the

fully expanded blocks would greatly increase the length of the entire block

structure). Making an error in composing the blocks the first time adds even

more inefficiency because the users are then required to unplug and replug

several blocks to correct the error(s). Even a seasoned blocks programmer is

likely to make some of these frustrating errors.

Figure 1.4: Half of the Quadratic Formula as represented in AI2

6

1.3.2 Reading and Searching Programs

As users get the hang of programming in App Inventor, their applications

become larger and more complex. Figure 1.5a and Figure 1.5b depict the

workspace for the TannerConnect app [Tan], a mobile application (in AI1)

created by two students, Sonali Sastry and Charlene Lee, in an introductory

CS class [Cs1] at Wellesley College teaching mobile application development

using AI1.

(a) Workspace with Collapsed Blocks (b) Workspace with Expanded Blocks

Figure 1.5: TannerConnect application [Tan] developed by Sonali Sastry
and Charlene Lee

It is extremely difficult for someone (even the project owners) to read this

program or search it for a particular piece of code. Figure 1.5b shows what

the workspace looks like when all of the collapsed blocks in Figure 1.5a are

expended using App Inventor’s expand all feature. App Inventor does offer

an organization feature which arranges the blocks so that they are aligned and

not overlapping, however even with all of the blocks organized, the program is

very difficult to read. Additionally App Inventor does not currently offer any

searching features; if someone reading the program needs to find a particular

piece of code, he/she must shuffle through the blocks of the entire program

7

to find it.

The difficulty of reading and searching programs is currently a very large

limitation of App Inventor as there are many people who would wish to read

one’s program. These parties include the developers of the app themselves,

App Inventor users who wish to learn from another project (perhaps this

project is hosted in the App Inventor gallery, a place where users can post

their projects publicly), or in the case where App Inventor is taught in a

Computer Science curriculum, instructors who wish to provide feedback and

support to their students having trouble developing these programs. Thus,

making App Inventor easier to read is a high priority.

1.3.3 Reusing or Sharing Programs

App Inventor does not currently offer a means of sharing projects or repli-

cating/reusing parts of AI2 blocks programs across projects. The only way

to achieve either of these tasks is for users to download the projects (in the

form of archived files) and send them to the person (or people) they wish to

share the projects with. If the receiving user(s) wishes to incorporate parts of

one project into another (even just between two of the user’s own projects),

the only way to accomplish this would to be to view the two projects side

by side and reconstruct the part in question in the second project. This is

extremely inefficient, and inhibits users from reusing blocks code in multiple

projects and sharing blocks code with others.

8

1.4 One Solution to Fix them All

Textual languages make writing, reading, searching, sharing and reusing pro-

grams much easier. In order to address the issues outlined above, I have

created a new textual language, TAIL, the Textual App Inventor Language,

that is isomorphic to AI2’s blocks programming language, and provided a

mechanism for converting between arbitrary AI2 block assemblies and TAIL

code.

TAIL syntax is designed to provide users with a systematic way to trans-

late the visual information on the blocks into text.

I have extended AI2 with a set of code blocks (Figure 1.6) for users to

specify TAIL code for expressions, statements, and top-level declarations,

representing original AI2 blocks. These code blocks have the same meaning

as the larger block assemblies they represent.

In order to ease the ability to read blocks programs, I provide the ability

to convert between AI2 blocks and TAIL code. Users can convert any set

of AI2 blocks into TAIL code using the TAIL code blocks I have added.

Section 5.3.3 talks about converting entire screens, workspaces, and projects

into TAIL, allowing users to view the code pertaining to the app in a more

concise, textual form, easy for reading. To facilitate the writing and sharing

of AI2 programs, I provide the ability to write App Inventor code in TAIL,

using my added TAIL code blocks, and convert the TAIL text in the code

blocks into the original AI2 blocks language. This improves upon the current

ability to share projects or fragments of projects because users can duplicate

code across projects by first converting projects into TAIL, and copy-pasting

TAIL code into a separate project to duplicate code across projects. Users

9

Figure 1.6: TAIL Code Blocks I have added to App Inventor

can convert this TAIL code back into blocks to continue programming with

the AI2 blocks if they prefer. This project also provides the ability to write

code in TAIL. The TAIL code is semantically equivalent to the AI2 blocks

code it represents, thus allowing users to write AI2 programs solely with

TAIL if they prefer, or to combine TAIL and AI2 blocks together using the

provided TAIL code blocks I added. Language isomorphism guarantees that

round trip conversions (from blocks to text and back or text to blocks and

back) begin and end with the identical program. Figure 1.7 to Figure 1.11

shows some sample conversion in both directions.

If the user starts out with a set of AI2 blocks he/she wishes to convert

to TAIL, the user can click an option in the context menu Convert to TAIL

(Figure 1.8) which will then transform the set of AI2 blocks rooted at the

10

Figure 1.7: AI2 Blocks to be Converted into TAIL Code Blocks

Figure 1.8: Click Context Menu Option for Converting Blocks to TAIL

Figure 1.9: Resulting TAIL Code Block

clicked block, into the TAIL code blocks, replacing the original blocks. The

resulting TAIL code block has the same functionality as the AI2 blocks.

Users can choose which blocks to convert, regardless of their position in

11

Figure 1.10: Converting TAIL to AI2 Blocks

Figure 1.11: Conversion yields the original AI2 Blocks

the syntax tree. While Figures 1.7 to 1.11 depict the round-trip conversion

of a top-level, global variable declaration block, Figures 1.12 to 1.14 depicts

three possible conversions of the same set of AI2 blocks. Each figure repre-

sents a conversion of the blocks at a different level of the syntax tree for the

set of blocks or TAIL text. All of the 6 sets of blocks (2 sets of blocks in

each figure) carry the same semantics even though the representations are

12

different. These figures also show that it is possible to use just AI2 blocks,

just a single TAIL text block, or even a combination of AI2 blocks and TAIL

text blocks in any given AI2 program.

Figure 1.12: Conversion of top level event handler

Figure 1.13: Conversion of statement block inside event handler

Figure 1.14: Conversion of nested expression block

This project aims to (1) increase AI2’s usability by providing an efficient

13

means for reading, constructing, and sharing programs, and (2) ease users’

transitions from blocks programming to text programming.

1.5 Road Map

The rest of this paper is organized as follows:

• Chapter 2 discusses work that is related to this project in the contexts

of exploring the relationship between visual and textual programming

languages, and the various notions of converting to text.

• Chapter 3 gives an overview of the TAIL language design process, from

general guiding principles to a detailed discussion of the TAIL syntax.

• Chapter 4 discusses the architecture and implementation details of this

project.

• Chapter 5 details the current state of this project, what remains to be

done, and ideas for future related projects, to further the work done

here.

14

Chapter 2

Related Work

Research of related projects reveals that there are varying notions of what it

means to "convert blocks to text." As I have mentioned above, my aim for

this project is to create and provide a means of converting to/from a textual

languages that is semantically and syntactically isomorphic to AI2’s blocks

language. This entails matching TAIL syntax to each and every block in AI2

and designing TAIL in such a way that round trip conversions between the

two languages yield the the original code that began the conversion (regard-

less of whether the conversion begins with blocks or text). I talk more about

the design of TAIL in Chapter 3.

In this chapter, I talk about other projects, both related and unrelated

to App Inventor that explore the relationship between blocks programming

languages (or other visual programming languages) and textual programming

languages, and the different notions of converting blocks to text in each of

these projects.

15

2.1 Scratch

Scratch is a popular blocks programming environment for creating anima-

tions and games. There have been two unique notations of representing

Scratch blocks programs in text form.

2.1.1 Scratch Project Summary

Desktop versions (i.e. the non-web-based versions) of Scratch allow users

to summarize their programs in a text format. The context menu option

allowing this conversion is slightly obscured. Users must hold down the

shift key and click File in the Scratch menu in order to view the option

Write Project Summary, which creates a text version of the Scratch blocks

code in an output file.

As App Inventor projects consist of multiple screens with code associated

for each screen, Scratch projects consist of multiple sprites (animated objects)

and scripts associated for each sprite in the project.

The Write Project Summary option converts the block scripts for each

sprite and compiles all of the scripts into one file. Figure 2.2 is the project

summary file of the sample blocks in Figure 2.1 [Scrb] depicts the textual

project summary of a sample scratch script.

In addition to a text form of all of the scripts in the project, the project

summary file also includes other potentially useful information such as "re-

vision history and summary of sprites and sounds used". [Scrb]

The generated text is a read-only summary of the Scratch blocks. It is

not executable code, and it cannot be converted back into Scratch blocks.

16

Figure 2.1: Scratch block scripts for different sprites

2.1.2 ScratchBlocks

Users of Scratch, sometimes referred to as "Scratchers", have developed plu-

gins [Scrc; Scrd] that allow users to specify Scratch blocks in an HTML-like

syntax for use on the Scratch Wiki, or the Scratch user forums for users

17

Figure 2.2: Project summary file corresponding to Figure 2.1

or developers to refer to specific sets of Scratch blocks in their posts on ei-

ther medium. The first of these plugins, ScratchBlocks was later replaced

by ScratchBlocks2, but for the intents of the discussion here in this section,

they provide the same functionality: the ability to translate a piece of text

(with a specific syntax) into images of Scratch blocks (or a set of blocks)

for use in the Scratch wiki and forums. This is perhaps the most similar

but also the most different from the relationship between TAIL and AI2

Blocks. ScratchBlocks is its own language responsible for rendering images

of Scratch blocks, whereas TAIL code can stand alone and carries the se-

18

mantics of the AI2 blocks code it represents. Figure 2.3 shows a sample

rendering of a ScratchBlocks script as an image of blocks in Scratch (as it

might be displayed on the Scratch Wiki). The documentation for this plu-

gin notes that the plugin "tries to match the code you write as closely as

possible, and doesn’t check [for] correct syntax" [Scrc]. There are additional

tools that users of the wiki and the forums can use that will "take blocks

directly from a Scratch project, and turn them into text [to] paste inside a

<scratchblocks> tag". This plugin, in conjunction with some tools pro-

vided by other Scratchers [Scre; Scrf], allows for two kinds of conversions:

from blocks inside a scratch project, to the ScratchBlocks script text (which

will then render this text as an image on the Scratch Wiki); and just the

latter half of the conversion mentioned, converting the ScratchBlocks script

text into an image of a set of Scratch blocks.

It is important to note that the ScratchBlocks and ScratchBlocks2 plugins

generate text code that is only for use on the Scratch Wiki and Scratch forums

(and not in the actual Scratch blocks programming environment). However,

there are additional tools which can convert Scratch projects [Scre] or scripts

that have been added to the Scratch backpack (a mechanism Scratch uses to

share/reuse code between projects) [Scrf] to the ScratchBlocks text for use

on the Wiki/forums.

This take on conversions between blocks and text is entirely different from

that of the project discussed in this paper. These plugins allow the conversion

from Scratch blocks to the text that is responsible for creating an image of

the original Scratch blocks that the text represents. This entirely different

view on blocks to text (to image) conversions puts an entirely different spin

19

on the relationship between different representations of programs.

<scratchblocks >
repeat (5)
move (10) steps

end
say [Done!]

</scratchblocks >

Figure 2.3: ScratchBlocks script rendered as an image of a set of blocks in
Scratch

2.2 Blockly

Bockly is a web-based blocks programming environment being developed at

Google. Blockly is referred to as a "visual programming editor"; however,

the underlying concept of Blockly is the same as the blocks languages used

in Scratch and MIT App Inventor 1 and 2. In fact, in the transition from

the Java applet to the JavaScript based blocks editor, AI1 transitioned from

the MIT OpenBlocks framework to using Blockly as the underlying blocks

language framework for AI2. The project wiki for Blockly includes a number

of sample applications built in Blockly which demonstrate different possible

uses of the environment. One such sample application, Code [Blob] allows

exporting a Blockly program into JavaScript, Python, Dart, or XML.

It is worth noting that while this particular application of Blockly does

allow for conversion of Blockly code to executable code in any one of the four

textual programming languages listed above, conversion in the other direction

20

is not possible. This is in part due to the fact that Python, JavaScript, Dart,

and XML respectively each do not have one-to-one correspondences with the

blocks language of Blockly. Arbitrary code written in one of these textual

languages cannot be translated into Blockly because the textual languages

are not isomorphic to Blockly.

Language isomorphism is one of the main design principles that guiding

the creation of TAIL. The work for this project is motivated by the necessity

for App Inventor users to be able to not only convert AI2 blocks into text,

but also to be able to write arbitrary code in a textual language (TAIL),

and be able to convert this textual code to the visual syntax of AI2 blocks.

Isomorphism of the two languages guarantees that any round trip conversions

will yield the original code (whether the origins were AI2 blocks or TAIL

text).

Because it is possible to translate from any Turing-complete textual pro-

gramming language to any other, translating from Blockly to the particular

languages mentioned here doesn’t say much about the specific relationship

between blocks and text languages.

2.3 PicoBlocks

PicoBlocks, from The Playful Invention Company [Pic], is another blocks-

programming environment based on research from the MIT Media Lab. This

software is intended for use with physical devices (mini-computers) called Pic-

oCrickets (Figure 2.4) which can be used alongside LEGO pieces to create

interesting mobile, interactive projects. The PicoBlocks programming envi-

21

Figure 2.4: A PicoCricket

ronment is used to program these PicoCrickets which can be combined with

traditional (and non-traditional) lego pieces as indicated above.

Figure 2.5, an image obtained from the PicoBlocks reference manual [Pic],

depicts an overview of the PicoBlocks environment and how it is used.

In addition to the blocks language, PicoBlocks includes a built-in textual

language for users to define new blocks. While the PicoBlocks blocks language

also allows users to define their own blocks (see Figure 2.6 and Figure 2.7),

blocks with inputs cannot be specified in the blocks language, but rather

only in the text language. Thus, the blocks language is meant to be used in

conjunction with the textual language for more advanced users to be able to

create more complex code.

PicoBlocks does not provide a means for conversion between the blocks

22

Figure 2.5: The PicoBlocks environment [Pic]

and text, rather, the two are in separate windows, but they are components

of the same program. The text language allows users to specify functions

and procedures which then appear as single blocks in the blocks window

which users can then use with the rest of their blocks program. Thus, the

text language is just a place for users to write declarations (e.g. new block

definitions, with or without inputs).

Thus this project illustrates yet another way that blocks and text lan-

guages can be used in conjunction.

23

Figure 2.6: A PicoBlocks custom block declaration

Figure 2.7: This block appears in the special MyBlocks drawer after
creating the block definition in Figure 2.6

2.4 SLASH

SLASH [Beh] is a student research project by Kara Behnke at the Univer-

sity of Colorado Boulder, the ATLAS Institute. A modification of Scratch,

SLASH uses blocks-based programming to produce code in the Linden Script-

24

ing Language (LSL) [Beh], to program behavior in the Second Life virtual

world. Behnke notes that "the goal of SLASH is to improve first-time pro-

gramming experiences for non-[CS]-majors by juxtaposing block-based pro-

gramming with [textual] programming language syntax" [Beh]. This research

project is also motivated by the goal of attempting to ease the transition for

novice programmers from blocks programming to textual programming. The

work involves the generation of textual code from blocks code, but does not

allow the conversion in the other direction. There is no connection between

the semantics of the textual language and the semantics of the blocks pro-

gramming language; instead of translating between two syntax tree represen-

tations of the same language, the blocks code in SLASH is used to generate

LSL syntax.

This project has the similar goal of attempting to ease the transition from

blocks programming to textual programming for novice programmers, by

"modifying the Scratch [blocks programming] environment to enable students

to learn [textual] language syntax while they program using blocks" [Beh]

This project attempts to fulfill its goals through the unique approach of

allowing students to create programs using blocks —therefore making full

use of all the advantages of blocks programming environments as mentioned

in the previous chapter —however the students are required to "compare and

analyze their blocks programs with the generated LSL scripts", thus pushing

students towards translating their understanding of program structure and

composition (which they’ve gained from blocks programming), into textual

programming.

25

2.5 Cabana

Cabana, being developed by the Department of Behavior and Logic Inc., is

another web-based application for the development of mobile applications

across platforms. Like App Inventor, Cabana aims to "make app develop-

ment easier" [Dic12]. Instead of a blocks programming language, Cabana uses

an environment designed like a wiring diagram which links together nodes

representing code modules. Cabana comes with pre-existing code modules

representing basic program fragments (for loops, if statements, etc.). Ad-

ditionally, Cabana allows users to specify their own code modules using a

built-in feature to specify nodes in JavaScript code. Thus, Cabana allows

for experienced programmers to write code more efficiently using JavaScript,

whereas novice programmers can still use the built-in wire diagram format

easily regardless of prior programming experience. The developers of Ca-

bana argue that this combination of wiring diagram and JavaScript nodes

"gives Cabana an advantage over App Inventor" by freeing users from the re-

striction of a "novice-centered programming environment like App Inventor’s

block language" [Dic12].

2.6 Previous Work on Blocks & Text Conver-

sion in App Inventor

This section continues the discussion of related work, but outlines projects

which are specific to App Inventor.

26

2.6.1 The Java Bridge

A subset of developers of MIT App Inventor have also created the App In-

ventor Java Bridge (I will refer to this as the Java Bridge). The Java Bridge

is designed to make a transition between using App Inventor for developing

Android applications to developing applications in Java using the Android

SDK. The Java Bridge allows App Inventor users to incorporate App In-

ventor components into apps they create in Java with the standard Android

SDK tools. This application is a good transition step for App Inventor users

who are or have become familiar with Java and wish to eventually transition

from App Inventor to the Android SDK for application development.

David Wolber of the App Inventor Developer Team has developed a tool

to use alongside the Java Bridge [Bri] which translates existing App Inventor

applications into Java applications which make calls to the Java Bridge.

Again, the Java Bridge, and David Wolber’s tool, mentioned above, offer

a different meaning of the notion of converting blocks to text. This tool

offers a way to convert entire App Inventor projects into full Java projects.

However, there is not a way to translate between just the blocks program in

App Inventor to a Java program, or even more specifically there is no way to

translate a subset of the blocks in the App Inventor blocks editor workspace

to a piece of Java code representing just that subset of blocks. Additionally,

users cannot specify code in Java to translate into the AI2 blocks.

27

2.6.2 Rendering Android App Inventor Code Blocks as

Pseudo-Python Code

Philip Guo, a former student at MIT, proposed a project similar to the

efforts of this project [Phia]. He proposed to provide App Inventor users

with a tool for converting App Inventor blocks code to a pseudo-Python

textual language (a new textual language, with syntax very similar to that of

Python). The goals of this additional feature were to improve the readability

of App Inventor Blocks code and to give novice programmers some "practice

reading code in textual form [to] help them transition to more advanced

programming courses" [Phia].

As Guo notes in his feature proposal, "the rendered pseudo-Python code

would be read-only," thus this feature does not include the additional capa-

bilities to specify a piece of code in this pseudo-Python syntax and have it

render as blocks or be able to convert it to blocks. Thus this feature solves

only one of the three limitations in App Inventor mentioned in Section 1.3.

Guo includes a prototype [Phib] of this feature in his proposal that con-

verts a given set of AI1 blocks using their underlying YAIL code (see Sec-

tion 4.1.1 for description of YAIL) into read-only pseudo-Python code.

2.6.3 Venthon: A First Take at a Creating a New Tex-

tual Language for App Inventor

Inspired by the proposal mentioned by Philip Guo’s work described in the

previous section, Erin Davis and I designed Venthon (App Inventor + Python),

a new textual language for App Inventor with Python-esque syntax. Venthon

28

was designed to take Guo’s work a step further and allow users to convert

blocks and text in either direction (specifying code in AI blocks and convert-

ing to Venthon or specifying code in Venthon and converting to AI blocks).

Venthon Language Design

As mentioned above, Venthon has Python-esque syntax. This syntax, in-

spired by Philip Guo’s pseudo-Python syntax, was chosen because it has

fewer syntactic markers than other popular programming languages usually

introduced to novice programmers (e.g. Java, C/C++). Additionally, Ven-

thon strips down to the bare minimum syntactic features of Python to keep

Venthon as simple as possible because it is designed to have the exact expres-

siveness of the App Inventor blocks language while increasing its ease of use.

Thus, unlike the Java Bridge, Venthon does not add any functionality that

is not already available in the App Inventor blocks language. Additionally,

unlike the Java Bridge, or the Android SDK, users of App Inventor do not

need to learn additional concepts (e.g. creating applications in Java, compil-

ing programs, additional features offered in the Android SDK). Users need

only learn how to convert each App Inventor block into Venthon in order to

translate between the blocks and text languages. The advantage in this is

that Venthon would be integrated into App Inventor, so users can continue

using the App Inventor Designer (described in Section 1.2), but they would

have the additional ability to choose whether to specify their code in the App

Inventor blocks language or Venthon depending on their preferences.

Figure 2.8 and Figure 2.9 depict an example of what blocks from AI1

would look like in Venthon.

29

Figure 2.8: Sample AI1 Blocks to be Rendered in Venthon

As shown in Figure 2.8 and Figure 2.9, top level declarations in AI1 such

as global variable declarations or event handlers look very much the same

as top-level declarations (e.g. global variable declarations and procedure

declarations) in Python. As in Python, a colon followed by indented lines

of code denote a sequence of statements, where the indentation level of the

particular line of code indicates which scope it is a part of.

30

height = 45

when Button1.Click():
Screen1.BackgroundColor = color.red

when Screen1.Initialize ():
Screen1.BackgroundColor = color.blue

fun average(x, y)=
(x+y)/2

Figure 2.9: Venthon Representation of Sample AI1 Blocks

As can be noted, some of the aspects of Venthon syntax stray quite a bit

from traditional Python syntax. The function declaration at the bottom of

the page looks closer to the syntax of a functional language such as ML. The

keyword fun, representing a function declaration, was chosen to differentiate

between the AI1 function declaration block and the AI1 procedure declara-

tion block. This distinction arises from the fact that the App Inventor blocks

language does not have a "return" statement block, but instead uses other

methods to have a block return an expression as its output. This is a small

example of what kinds of things need to be taken into consideration when

designing a language that is isomorphic to the App Inventor blocks language.

Chapter 3 discusses in detail the design of TAIL.

Venthon was designed as a first take at a textual language for App Inven-

tor, with the idea (or rather future goal) in mind that there could be multiple

syntaxes for a textual language for App Inventor, and ideally each of these

syntaxes would be isomorphic to each other, thus allowing the App Inventor

user to pick and choose which language he/she prefers to use.

31

Erin implemented the AI1 blocks to Venthon conversion, while I imple-

mented the Venthon parser and the Venthon to AI1 blocks conversion.

The implementation of Venthon is very similar to that of TAIL (discussed

in further detail in Section 4.2). I specified Venthon syntax in a grammar

using ANTLR [Ant], a parser generator which takes a language grammar as

input and produces a lexer and parser for the language defined by the input

grammar. Options in the ANTLR grammar file allow the user to specify

aspects of the generated parser and lexer. One of the most important options

to specify in the grammar is the target language in which to generate the

lexer and parser for the language being created.

The Venthon parser generated by ANTLR was configured to produce

an intermediate JSON representation of the information from the parsed

Venthon program. This intermediate representation, called JAIL, (JSON

App Inventor Language) was to be used as a stepping stone between Venthon

and the AI1 blocks language.

Though considerable progress was made on the implementation of Ven-

thon, the transition from AI1 to AI2 required that the Venthon parser and

lexer be converted from Java to JavaScript, just as the rest of the code in

App Inventor had made the same transition. Additionally while the origi-

nal implementation converts a Venthon program into the intermediate JAIL

notation, the AI2 architecture better lends itself to converting the textual

language program into the underlying XML representation of AI2 blocks

(discussed in depth in Chapter 4). Finally, the design of the Venthon syntax

and the Venthon implementation remain incomplete as the language needs

to be redesigned to better adhere to AI2 and there are remaining design

32

decisions for some very specific details of the language.

Thus, while continuing the Venthon implementation, I made the decision

to put Venthon development on hold and instead design a language with a

more systematic syntax which would be easily predictable given any set of

AI2 blocks. This language, TAIL, is the primary focus of this paper, and is

discussed in detail over the next few chapters.

2.7 Code to Blocks

MIT students Chazz Sims and Jimmy Hernandez worked on a project, Code

to Blocks (C2B) [SH], that is perhaps most similar (with the exception of

Venthon) to the work I have done on TAIL, and is the most recent work

previous work of this kind in App Inventor.

This project is motivated by many of the same issues that motivate the

project discussed in the rest of this paper. The Code to Blocks work by Sims

and Hernandez along with the work I have done on Venthon, and TAIL all

address the limitations in App Inventor discussed in Section 1.3.

C2B translates between AI2 blocks and Python. Sims and Hernandez

were successful in converting between blocks and text in both the blocks to

text and text to blocks directions. However, as noted in the C2B write-up,

"the scope of Python syntax without an Android Block representation is

greater than initially expected" [SH]. Python and the AI2 blocks language

are not isomorphic, meaning that there is not a one-to-one correspondence

in both directions: between Python and Ai2 blocks as well as between AI2

blocks and Python. While it may be the case that every block in the AI2

33

blocks language can be expressed as a piece of Python code, and therefore

any valid AI2 program can be translated into valid Python, it is not the case

that any valid Python program can be translated into a valid AI2 program.

In fact, the C2B write-up provides a list of Python constructs that have no

equivalent representation in the AI2 blocks programming language. These

constructs include, but are not limited to the following: lambda functions,

dictionaries, list comprehensions, class definitions, etc..

The work on C2B reinforces the importance of language isomorphism

when considering the conversion from the chosen textual representation to

the AI2 blocks. The language isomorphism principle and its importance are

discussed in more detail in Section 3.1.1.

34

Chapter 3

TAIL Language Design

3.1 Design Principles

The design of the TAIL language was guided by a few motivating principles,

discussed in detail in the following sub-sections. Following these discussions

is a description of the TAIL syntax, and how it corresponds to the AI2 blocks

language.

3.1.1 Language Isomorphism

As mentioned in Section 1.4, I created TAIL in an attempt to combat the

limitations in App Inventor (Section 1.3). With the creation of TAIL, I hope

to make App Inventor more readable and searchable, ease user’s ability to

share App Inventor code across projects and to easily recreate segments of

code in multiple projects, and to allow App Inventor users to write code in a

more traditional way (i.e. through typing text instead of clicking and drag-

ging visual components with a mouse). The textual language can adhere to

35

those users who are perhaps more experienced programmers but are looking

to create Android apps through an easy-to-use interface, as well as to those

users who are ready to transition from blocks programming languages to the

more traditional textual programming languages.

In order to address the issue of making App Inventor programs more

readable and searchable through a textual language, App Inventor users must

have a means of converting their existing AI2 projects (or AI2 projects they

create in the future) into the textual language. This one-way conversion is

enough to solve the problem of reading and searching AI2 projects. Thus,

for this specific problem, having read-only text (such as the work by Philip

Guo discussed in Section 2.6.2) would suffice.

Another limitation of App Inventor, mentioned in Section 1.3, is the ineffi-

ciency and tediousness of creating complex applications in a blocks program-

ming language. While App Inventor makes mobile application development

simpler by removing the overhead of the Android SDK and by providing

an environment where a lack of programming experience is not a hindrance,

users (experienced programmers and novices alike) will quickly become ac-

customed to the concept of creating programs by connecting visual program

fragments together. As the user becomes more accustomed to blocks pro-

gramming, the user also begins to create more and more complicated appli-

cations, and consequently, these applications become more tedious to create.

Blocks programming languages have the unfortunate downside that they be-

come increasingly frustrating to use the more one understands how to use

them, because users become quickly attuned to the concept of combining

blocks to make programs, the user wants to be able to perform these actions

36

quickly. However, for the majority of computer users, they are more attuned

to and efficient at typing than they are at clicking and dragging objects with

a mouse or trackpad. The repetitive motion of click-and-drag is much slower

than typing (for the efficient typist). For experienced programmers, pro-

gramming with a mouse is extremely frustrating whereas typing code is the

norm.

Thus, providing App Inventor users with a textual alternative to the

blocks programming language provided would increase efficiency of many

of the users who are already familiar with programming, as well as users

who are ready to transition beyond blocks programming. Allowing users to

convert from the textual programming language to the blocks programming

languages allows the users to personalize their programming experience by

combining the two forms of programming as suits their needs. Thus, for

users who are beginning the transition from blocks programming to textual

programming don’t need to give up programming in the AI2 blocks language

in order to attempt programming in TAIL. These users can attempt writing

code in TAIL and convert it to blocks to test their understanding.

Finally, combining the conversion in both directions (blocks to text and

text to blocks) allows for the solution to the third limitation in App Inventor:

sharing code between projects.

Currently, App Inventor users would have to go through something similar

to the following scenario in order to replicate code between multiple projects.

App Inventor’s Current Sharing Scenario:

User A has an app (user-A-app) and User B is interested in

this app and how User A programmed it. User B talks to User

37

A and looks at the code in user-A-app and wants to recreate

something similar in one of User B’s own projects (user-B-app).

User A agrees to let User B use part of the code from user-A-app.

Therefore, User A downloads its project (in the form of a .aia

file—denoting an App Inventor project file) and sends it to User

B (through email or some other file transfer method). User B

then uploads User A’s project into User B’s own App Inventor

account. User B opens user-B-app in a separate browser window.

User B views its copy of user-A-app side-by-side with user-B-app.

User B then meticulously reconstructs part of the code from user-

A-app in user-B-app, by dragging, dropping, and clicking blocks

together.

Providing App Inventor users with the capabilities to convert from blocks

to text and also from text to blocks allows for an easier method of sharing

entire AI2 programs or parts of programs across different projects. The new

sharing scenario would be much simpler:

User A converts user-A-app to TAIL, copies and pastes this

TAIL code in an email to User B. User B then copy-pastes this

TAIL code (or part of this TAIL code) into user-B-app and con-

verts to blocks.

Additional Details of the Conversion

Above, I talk about "converting" from blocks to text and "converting" from

text to blocks. On a larger scale the term conversion refers to the translation

38

of an entire AI2 project (including information from the Blocks Editor as

well as the Designer, both mentioned in Section 1.2) into TAIL text. As

noted in Chapter 5, I have not currently implemented this, but Section 5.3.3

discusses in detail what this large scale conversion will entail. On a smaller

scale, the term conversion also applies to translating parts of programs such

as individual blocks or sets of blocks. As mentioned in Section 1.4, the App

Inventor user is allowed to choose which block or set of blocks to convert into

TAIL (or vice-versa), regardless of where this block or set of blocks lies in

the syntax tree.

It is also important to note that though I talk specifically about how

conversions allow users to combat the current limitations in App Inventor,

conversions are not necessary for the user’s mobile app to function correctly.

Specifically I want to point out that TAIL code need not be converted to AI2

blocks before running the app as the piece of TAIL code carries the exact

semantics of the AI2 code it represents.

All of what is mentioned above is possible largely due to the fact that

TAIL and AI2 blocks are isomorphic languages. Formally this means that

there is a bijection between the languages. Informally, this directly implies

that round trip conversions between blocks and text (i.e. from TAIL to AI2

blocks to TAIL, or from AI2 blocks to TAIL to AI2 blocks) will yield the

original code (whether it is TAIL code or AI2 blocks code) that began the

conversion cycle. Language isomorphism is the major design principle that

guides all of the decisions regarding details of the TAIL syntax.

Thus, there are a few important benefits of language isomorphism.

Users cannot express functionality in TAIL that they cannot express in

39

AI2 blocks, and they cannot express functionality in AI2 that they cannot

express in TAIL. This allows users to program AI2 code solely in TAIL.

Thus, users can write a TAIL program to specify an Android app. Users do

not need to convert their TAIL programs back into AI2 blocks in order to

create a working app. Thus the issue found in the Code to Blocks project

(Section 2.7) of users being able to express things in the Python language

that hold no meaning with regards to programming an App Inventor app, is

eliminated with an isomorphic text language.

The round-trip conversion allows users (especially novice programmers)

to help transition from the blocks programming language to textual program-

ming languages because users can write TAIL text and revert back to blocks

to see the notation they are more familiar and comfortable with. Users can

also convert a set of blocks to text to check what the TAIL for a given set of

blocks would look like.

Finally, language isomorphism allows for creating programs that combine

both the text and blocks syntaxes. Instead of not being able to translate

a program into text until the program is complete, with a language that is

isomorphic to the AI2 blocks language, users can translate individual or sets

of fragments of their programs into TAIL. Each AI2 block can be translated

into TAIL individually or sets of blocks can be translated into TAIL as a

whole. Thus, users can choose which parts of their programs they want

to express in TAIL and which parts they want to express in AI2 blocks.

As an example, users can choose to convert certain sub-blocks to TAIL for

notational brevity (e.g. the quadratic formula). In other situations, users

can choose to keep the blocks notation where they prefer it (e.g. to have a

40

visual reminder of the number of arguments that a block takes).

3.2 Easy Transition to TAIL

In addition to adhering to the language isomorphism principle, all TAIL

syntax decisions were guided by the aim to make the transition from the AI2

blocks language to the TAIL text language as easy as possible. Thus, the

syntax of TAIL is designed to allow users to easily predict the equivalent TAIL

text for a given set of AI2 blocks. The details of the syntax are presented in

the following section.

3.2.1 TAIL Syntax

The TAIL syntax is relatively systematic (given the visual information on

the equivalent AI2 blocks), and is guided by some simple rules:

1. TAIL expressions are represented using curly braces.

2. TAIL statements are represented using square brackets.

3. TAIL top level declarations are denoted by parens.

4. Given an AI2 block, the corresponding TAIL code will have

the same title as the AI2 block where any spaces in the title

of the block are replaced with underscores.

5. Labels on AI2 blocks are followed by a colon in TAIL.

These rules are described in more detail below.

41

Please note that some of these TAIL examples use the symbol {$}. This

symbol is not valid TAIL. Instead, this symbol is a placeholder, for the pur-

pose of these examples, for a valid TAIL expression which should replace

the {$}. Without a valid TAIL expression in place of {$}, the entire TAIL

fragment is invalid (see discussion in Section 5.3.3 about representing incom-

plete AI2 blocks in TAIL). Additionally, note that I have not created a place

holder for empty statement sequences. This is because the empty statement

sequence is a valid statement sequence in AI2 and consequently TAIL.

Expressions

Expression blocks (see sample expression blocks in Figure 3.1) are blocks

with plugs (shown in Figure 3.2a), which indicate that the block outputs a

value. Any AI2 block can have any number of sockets (shown in Figure 3.2b

and Figure 3.2c). A socket on a block indicates that this block expects a

value as input. The shapes of the plugs and sockets indicate that the two

blocks should fit together. Note that there are some sockets that expect a

certain type of input, but this type is not represented with a different plug

shape, so blocks with plugs of the incorrect type will bounce away from the

socket when trying to connect the two, to indicate that these two blocks

cannot be connected together.

TAIL expressions are represented using curly braces. (Figure 3.3)

Note that the left curly brace { is visually similar to the plug on AI2

expression blocks.

42

Figure 3.1: AI2 Expression Blocks

(a) A Plug (b) A Socket (c) An Inline Socket

Figure 3.2: Plugs and Sockets in AI2 Blocks

Statements

Statement blocks (see sample statement blocks in Figure 3.4) are blocks

that compose vertically with each other to form a sequence of statements.

The vertical composition of the blocks is indicated by nubs and notches

(Figure 3.5) on the top and bottom of the blocks. Nubs and notches are

referred to as previous connector and next connector in AI2 jargon.

TAIL statements are represented using square brackets.

(Figure 3.6)

43

{0} {not {$}} {sqrt {$}} {length {$}}

{" string of text"} {list {$} {$}} {join {$} {$}}

{true} {false} {{$} and {$}} {{$} - {$}}

{color red} {color green} {color blue}

{list}

{get global name} {{12} + {sqrt {25}}}

Figure 3.3: TAIL Expressions Corresponding to AI2 Expression Blocks in
Figure 3.1

Figure 3.4: AI2 Statement Blocks

Declarations

Top level declarations blocks (Figure 3.7) such as global variable declarations,

event handlers, and procedure or function declarations, do not have any

44

(a) A Nub (b) A Nub Indicating
Expected Statement

Sequence Inside Statement

(c) A Notch

Figure 3.5: Nubs and Notches in AI2 Blocks

[call procedure] [set global name to: {$}]

[call Canvas1.Clear] [add_items_to_list
list: {$} item: {$}]

[if {$} then:] [while test: {$} do:]

[for_each <item > in list: {$} do:]

[set Screen1.BackgroundColor to: {color red}]
[set global name to: {5}]
[call procedure]

[for_each <number > from: {1} to: {5} by: {1} do:]

Figure 3.6: TAIL Statements Corresponding to AI2 Statement Blocks in
Figure 3.4

external connectors which allow them to be composed with other blocks.

Thus, these blocks cannot be placed inside of any other block, precisely

because these are top-level blocks (they belong at the top of the syntax

tree).

TAIL top level declarations are denoted by parens. (Figure 3.8)

Finally, these last two rules are a bit more general.

45

Figure 3.7: AI2 Top Level Declaration Blocks

Given an AI2 block, the corresponding TAIL code will have the

same title as the AI2 block where any spaces in the title of the block

are replaced with underscores.

An example of a title on a block is initialize global on the global

variable declaration block, or for each on the for loop block. These titles

46

(when Button1.Click do:)

(when Screen1.Initialize
do: [set Screen1.BackgroundColor to:

{color blue}]
[call procedure])

(when Screen1.Initialize do:)

(to <function > result: {$})
(to <function > <myName >

result: {join
{"hello"}
{get myName }})

(to <procedure > do:)
(to <procedure > <x>

do: [call Canvas1.Clear]
[set global name

to: {get x}])

(initialize_global <name > to: {$})
(initialize_global <name > to: {3})

Figure 3.8: TAIL Top Level Declarations (TLDs) Corresponding to AI2
TLD Blocks in Figure 3.7

are converted to initialize_global and for_each respectively in the TAIL

counterparts of these two blocks.

Titles of AI2 blocks are not to be confused with labels which appear

before sockets, plugs, or nubs (discussed above).

Labels on AI2 blocks are followed by a colon in TAIL.

47

I will conclude this section by noting that part of the reason that devel-

opment on Venthon (see Section 2.6.3) was put on hold was that there were

more design details to consider in Venthon because the syntax was not as

systematic (cannot be described as concisely in a few rules) as the TAIL syn-

tax, which systematically follows from visual information on the AI2 blocks.

Thus, even though Venthon uses fewer syntactic markers, the syntactic struc-

ture of Venthon programs is more different from the syntactic structure of

AI2 blocks.

48

Chapter 4

Integrating into App Inventor &

Creating the TAIL Language

In Chapter 3 I discuss TAIL language design (i.e. why TAIL looks the way

it looks). In this chapter I outline how I integrated TAIL into App Inventor.

This chapter discusses a wide variety of topics from general architecture of

my project, to design details, to my specific implementation.

4.1 Architecture

4.1.1 Description of AI2 Architecture

The AI2 blocks language and TAIL are just two different representations

of the same abstract syntax tree for representing AI2 programs. In addi-

tion to these two representations, there are two more underlying represen-

tations that must be mentioned. AI2 blocks have an underlying XML tree

49

representation where each AI2 block is an XML block element denoted by

<block>...</block>. Underlying the AI2 blocks is another representation,

YAIL (Young Android Intermediate Language) which carries the semantics

of the blocks and is the stepping stone towards generating executable code

(representing the AI2 program) to run on the Android device. These four

representations (an example depicted in Figures 4.1 to 4.4, AI2 blocks, XML,

YAIL, and TAIL are all varying representations of the same syntax tree.

Figure 4.1: AI2 Blocks representation of syntax tree

4.1.2 Extending AI2 with TAIL Code Blocks

As noted in Section 1.4, I not only create a new language, TAIL, but I also

provide a means for AI2 users to convert from AI2 blocks to TAIL code and

from TAIL code to AI2 blocks. I have accomplished this by adding a new

set of blocks (code blocks) to AI2 (Figure 1.6).

There are three code blocks, one for each of the three different types

program fragments in AI2 (discussed in Section 3.2.1): expression blocks,

statement blocks, and top level declaration blocks.

These new code blocks allow AI2 users to specify TAIL code within the

50

Figure 4.2: XML representation of syntax tree

editable labels on the blocks.

The resulting edited code block is valid if it contains valid TAIL code for

51

Figure 4.3: YAIL representation of syntax tree (determines the code that is
executed on the Android device)

Figure 4.4: TAIL representation of syntax tree

the type of block it is. This means that the TAIL expression code block must

contain a valid TAIL expression, the TAIL statement code block must contain

a valid TAIL statement, but if the TAIL expression code block contains a

52

valid TAIL statement, the TAIL expression code block is still invalid). If

the edited code block is valid, then this code block carries the semantics

of the AI2 block(s) it represents and can be used just as the corresponding

AI2 block(s) would be used when running the mobile app on an Android

device. Thus users need not convert back to blocks in order to run the app.

Note that since the valid TAIL code block carries the semantics of the AI2

blocks it represents, the TAIL code blocks are shaped like the types of AI2

program fragments they represent. The TAIL expression code block is itself

an expression block because it has a plug. The TAIL statement code block is

itself a statement block because it has nubs and notches. The TAIL top level

declaration code block is itself a top level declaration block because it does

not have any external connectors such as plugs, sockets, nubs, or notches.

See Figure 4.5 for a valid TAIL expression code block.

Figure 4.5: A valid TAIL expression code block

If the resulting edited code block contains invalid TAIL code, meaning

that the user either specified incorrect TAIL or the wrong type of TAIL

fragment for the specific code block (i.e. the user entered a valid TAIL

expression inside a TAIL statement code block), the code block will display

an error icon (with a corresponding error message), and the code block will

carry the semantics of an AI2 error. See Figure 4.6 for an invalid TAIL code

block.

In addition to the ability to specify TAIL code inside these code blocks

53

Figure 4.6: An invalid TAIL expression code block

and use a TAIL code block as is, users can convert any valid TAIL code block

to the AI2 block or set of blocks it represents.

4.1.3 Blocks to Text Converter

Section 3.1.1 talks in depth about a two way conversion between the AI2

blocks and TAIL text. The blocks to text conversion proves to be much

simpler than the text to blocks conversion. In order to convert AI2 blocks to

the TAIL code blocks with the appropriate TAIL text, I created a blocks to

text converter. This converter is specified in a JavaScript file inside the AI2

code base.

As mentioned in Section 4.1.1, AI2 blocks have an underlying XML rep-

resentation which is based on their high-level descriptors in the JavaScript

based blocks editor portion of AI2 code. AI2 provides useful functions for

translating a given block or set of blocks to its XML DOM and translating

a given XML DOM for a block or set of blocks to the block/set of blocks

the XML DOM represents. As briefly noted in Section 2.6.3, I use this XML

representation of the blocks as the stepping stone for the blocks and text con-

versions. Thus, instead of having to convert the SVG graphics of the block

to TAIL code, I can just use AI2’s built-in XML DOM conversion function

54

to translate a given set of blocks into its underlying XML, and then translate

this XML to TAIL code.

The blocks to text converter first translates a given set of blocks to its

XML DOM. Recall that an XML DOM is actually just a tree, as is any given

program (all programs can be viewed in terms of their abstract syntax tree).

The blocks to text converter walks down the XML Tree starting at the root el-

ement. In AI2’s underlying XML representation, the root element will always

be a block element denoted with a block XML tag (<block>...</block>).

As the converter walks down the XML tree, it accumulates a string, convert-

ing each part of the XML tree to a substring representing the part of the

TAIL abstract syntax tree that is equivalent to this part of the XML tree.

By the time the converter has walked down to the end of the tree, the entire

XML tree has been converted into the corresponding TAIL code.

After accumulating the entire string with the TAIL code, the blocks to

text converter creates an XML element representing a TAIL code block (dis-

cussed in Section 4.1.2) with this TAIL code inside its edited label. The

resulting XML element can then be converted into the visual TAIL code

block (containing the new, valid TAIL code) using the built-in AI2 XML to

blocks conversion function.

An App Inventor user can convert a set of AI2 blocks using the context

menu on any given block in the AI2 Blocks Editor workspace. The context

menu for any AI2 block will have a Convert to TAIL option which when

clicked will replace the given block any blocks nested inside of it into a

corresponding TAIL code block. It is important to note that the Convert to

TAIL context menu option will be un-clickable if the AI2 block has any empty

55

sockets as empty sockets are errors in AI2 programs (not in the workspace

itself, but rather in a valid program). In my current implementation, any

errors must be corrected before being able to convert AI2 blocks to TAIL

code blocks. However, it is important to allow users to convert between

the notations as they are programming. This means that I must implement

incomplete blocks (i.e. any blocks with empty sockets) in TAIL. Adding

incomplete blocks to TAIL will allow users to convert between blocks and

text as they are in the midst of programming. For example, if a user starts

off programming in the AI2 blocks language, and in the midst of plugging

blocks together, the user realizes he/she needs to create a long arithmetic

expression that he/she would prefer to write in text, the user should be able

to convert the entire construction to TAIL and type the rest in TAIL (note

that the user can also plug in a TAIL expression code block and type the

TAIL for the arithmetic expression inside this code block).

Allowing incomplete blocks to be represented in TAIL is also necessary

for converting entire workspaces and projects into TAIL. This is discussed in

Section 5.3.3.

Interesting Design Detail

Any given AI2 block has the option to convert to TAIL. This option converts

the given AI2 block into a corresponding TAIL code block. The TAIL code

blocks I have added to the AI2 blocks language are themselves AI2 blocks;

thus, TAIL code blocks can also be converted into TAIL. App Inventor users

can have valid, nested TAIL code blocks (Figure 4.7) which are semantically

equivalent to the AI2 blocks represented by the TAIL code block that is most

56

deeply nested. The blocks in Figure 4.7, Figure 4.8, and Figure 4.9 are all

semantically equivalent.

Figure 4.7: A deeply nested TAIL code block

Figure 4.8: TAIL code block at the deepest level of nesting from Figure 4.7

Figure 4.9: AI2 block represented by TAIL code block in Figure 4.8

4.1.4 Creating TAIL

Conversion from text to blocks proves to be much more complicated than the

conversion in the opposite direction. The following section offers a high-level

description of the three major steps involved in creating TAIL and converting

pieces of TAIL code into blocks.

Step 1: Lexing

When a computer reads a programming language, it first breaks the text of

the program into lexical tokens. The mechanism responsible for performing

57

this function is called a lexer. A lexer takes as its input a string of text of the

entire program. The lexer then breaks up the text of the program into tokens,

the smallest, meaningful units of the programming language. These lexical

tokens often include (but are not limited to) identifiers, strings, whitespace,

syntactic markers (such as parens, semi colons, brackets, etc.), numbers, and

keywords of the language. The lexer will use rules specified in the lexical

grammar (a specification of the lexical syntax) to break up the tokens. The

TAIL lexer is described in detail in Section 4.2.2.

Step 2: Parsing

The next step the computer takes in reading a programming language is to

take the tokens generated by the lexer arrange the tokens in a tree structure

representing the syntactic structure of the program. The mechanism respon-

sible for this function is called a parser. The parser works together with the

lexer. A parser takes as its input the tokens that the lexer emits, and outputs

an abstract syntax tree representing the syntactic structure of the program.

Like the lexer, parsers also use rules from the grammar (specification of syn-

tactic structure) of the language being parsed to determine how tokens can

compose together to form a valid program.

Above I mention that one possible lexer token is whitespace. In most

programming languages, whitespace tokens are thrown out when the tokens

are being fed to the parser, because in many programming languages, whites-

pace is not an important token in determining the syntactic structure of a

program. In languages like Python, however, whitespace is very important

because it is the token that is used to indicate block structures and scope

58

within a Python program. This was a non-trivial component of the parser

for Venthon (which, like Python, also uses whitespace to denote block struc-

ture/scope of a Venthon program), however, whitespace tokens can be thrown

out in the context of parsing TAIL.

The TAIL parser is described in detail in Section 4.2.3.

Step 3: Tree Conversion

The final step to take in the context of converting the fully parsed, valid TAIL

program into AI2 blocks is to convert the abstract syntax tree generated by

the parser into the blocks. Section 4.1.3 talks about the underlying XML

representation of the blocks. AI2 has built-in functions to convert an XML

tree (with the valid syntax for the XML representation) to the AI2 blocks it

represents.

I translate the abstract syntax tree generated by the TAIL Parser (dis-

cussed in Section 4.2.3) to the underlying XML representation of the AI2

blocks the parsed TAIL code represents.

To put the tree conversion in the context of the TAIL code blocks (de-

scribed in Section 4.1.2), each TAIL code block is running the TAIL lexer

and parser and parsing (which includes lexing) the text inside the editable

text box on the TAIL code block. If the text inside the editable text box is

invalid TAIL code, a red error icon appears on the TAIL code block. When

clicked on, the red error icon reveals the first parse error for the invalid TAIL

text. When all errors have been corrected and the TAIL code block has cor-

rect TAIL code (in the appropriate TAIL code block), the user can click on

the context menu of the block which has two new options: the Convert to

59

TAIL option, mentioned in Section 4.1.3, and a Convert to Blocks option.

The Convert to Blocks option performs the tree conversion.

The tree conversion is described in more detail in Section 4.2.4.

4.2 Implementation of TAIL & Text to Blocks

Conversion

In order to implement TAIL and the text to blocks conversion, I used ANTLR,

Another Tool for Language Recognition [Ant], a parser generator (described

in Section 4.2.1). I then integrate the output of ANLTR into the AI2 code

base (more specifically the TAIL code blocks I added), to allow App Inventor

users to specify AI2 code using TAIL text and optionally convert the TAIL

text into AI2 blocks.

4.2.1 What is a Parser Generator?

ANTLR, Another Tool for Language Recognition, developed by Terrence

Parr, is a parser generator. Parser generators, like ANTLR, take, as input,

a grammar specification for the language the user is trying to create. The

parser generator then produces a lexer and parser for the language speci-

fied based on its grammar. The input grammar, written in ANTLR’s own

grammar syntax, consists of lexer and parser rules which indicate what a

valid program for the language being specified should look like. The lexer

and grammar rules are described in detail in Section 4.2.2 and Section 4.2.3

respectively.

60

ANTLR grammars have a number of different options that users can set

to obtain different results. One of the most important options the user can

specify is the target language in which ANTLR should generate the parser

and lexer. The target language for the TAIL grammar is JavaScript just as

the rest of the AI2 blocks editor code is in JavaScript.

As an important note, the most recent versions of ANTLR (ANTLR

v.3.4-v.3.5 and ANTLR 4) do not have a working JavaScript target, so I

used ANTLR v.3.3 in this project, the most recent version of ANTLR that

has a working JavaScript target.

4.2.2 Lexing with ANTLR

I use ANTLR to generate the TAIL lexer by specifying lexer rules for my

TAIL grammar. There are three different kinds of lexer rules. There are

simple lexer rules (Figure 4.10) that specify tokens that are string literals

(examples of such tokens are syntactic markers or keywords in the language).

Figure 4.10: Sample lexer rules matching string literals

61

There are complex lexer rules (Figure 4.11) that use a regular expression

syntax to match text. Each instance of these two kinds of lexer rules is a

specification of a different lexical token.

Figure 4.11: Lexer rule matching numbers in TAIL

Finally, there is a third kind of lexer rule called a fragment, which is

a helper rule which can only be used inside other lexer rules and does not

specify its own token. Figure 4.14 is an example of a fragment.

Figure 4.12: A lexer fragment rule

4.2.3 Parsing with ANTLR

ANTLR grammar files consist of both lexer and parser rules. Parser rules

are similar to lexer rules. Instead of specifying tokens, each parser rule

specifies part of the syntactic structure of a TAIL program. The portion of

the grammar consisting solely of parser rules is a context-free grammar. The

ANTLR generated TAIL parser will follow the grammar rules, starting at

a top level rule (whatever is calling the parser can specify which top level

parser rule to begin with), and following sub-rules, until each the sub-rule

reaches all terminal rules. A terminal rule is a parser rule which matches

62

only lexer rules, thus ending the rule tree. Figures 4.13 to 4.16 depicts some

sample parser rules.

Figure 4.13: The top level parser rule for TAIL expressions

Figure 4.14: Following sub rules from Figure 4.13

Figure 4.15: Following sub rules from Figure ??

63

Figure 4.16: The terminal parser rule

4.2.4 Tree Conversion with ANTLR

Once the input TAIL text has been parsed (and if the parser has determined

that it is valid TAIL code), the output abstract syntax tree is converted

into the underlying XML representation of the AI2 blocks corresponding

to the TAIL text. I accomplish this tree conversion simultaneously as the

parser generates the abstract syntax tree using ANTLR actions. ANLTR

grammars have the additional feature of allowing the user to specify bits

of executable code (in the target language for the grammar, JavaScript in

this case) throughout the different grammar rules. These bits of code, called

actions, are executed as the parser matches the tokens in the token stream

provided by the lexer to the parser rules in the grammar. The ANTLR

actions can be interspersed through out a rule to be executed at different

points of the rule matching.

Figure 4.17 depicts the ANTLR parser rule responsible for matching the

64

atom rule from Figure 4.16 with actions included.

65

Figure 4.17: The terminal parser rule atom with ANTLR actions embedded

66

Chapter 5

Conclusion and Future Work

5.1 Current State

In its current state, the TAIL language has support for several (but not

all) of the different program fragments in AI2. All three types of program

fragments (expressions, statements, and top level declarations) have been

implemented in AI2. Round trip conversions work for all of the blocks that

can currently be specified in TAIL (i.e. there are rules for these blocks in the

TAIL grammar). There are still outstanding blocks that need to be added

to the TAIL grammar and the blocks to text converter. Additionally, YAIL

generators (which specify the semantics of the blocks) currently only exist

for the TAIL expression code block and not TAIL statement or declaration

blocks.

67

5.2 Immediate Future

There is quite a bit of work that remains to be done before TAIL can be

integrated into a future official release of AI2. Part of this work is discussed

in this section; this is work that can be completed in the short term future (a

few weeks). The rest of this work is discussed in the following section; this

is work that can be completed in the slightly longer term (1-3 months)).

5.2.1 Adding all AI2 Blocks to the TAIL Grammar

Although many of the AI2 blocks can be expressed in TAIL, not all AI2

blocks have been added to the TAIL language. Currently most individual

AI2 blocks are accounted for in their own parser grammar rules. There

are a few exceptions (e.g. arithmetic expressions, event handlers, compo-

nent methods) in which a single parser grammar rule accounts for many AI2

blocks. For example all AI2 event handlers can be expressed in TAIL using

only a single parser grammar rule. All event handler blocks have a syntactic

structure which can be abstracted into one high level rule. Other than the

few exceptions in which one rule can express multiple AI2 blocks, most AI2

blocks must be accounted for in their own specific parser grammar rules.

Examples of such blocks are depicted in Figure 5.1.

It is necessary to add all of the AI2 blocks to the TAIL grammar. This

will currently require adding an individual rule for the all of the blocks that

TAIL does not currently support.

The process of adding an AI2 block to the TAIL grammar is straightfor-

ward because the TAIL grammar is designed to make the translation from

68

Figure 5.1: Examples of blocks that require individual grammar rules

AI2 blocks to TAIL syntax as easy as possible using the simple language de-

sign rules outlined in Section 3.2.1. However, though this process is straight-

forward, it is very tedious because the developer must not only create a new

TAIL parser rule pertaining to the block, but also add the ANTLR actions

to translate the TAIL text into the AI2 blocks’ underlying XML representa-

tion (as described in Section 4.2.3 and Section 4.2.4). Section 5.3.5 discusses

the possibility of creating some sort of abstraction to simplify the process of

adding an AI2 block to the TAIL grammar.

In addition to adding the rest of the AI2 blocks to the TAIL grammar,

I want to allow for the conversion of on-block comments. AI2 allows users

to add comments to individual blocks (via the context menu for the block).

These comments appear as an icon next to the block’s title with a ? on it

(Figure 5.2).

When this comment icon is clicked, there is a speech bubble (similar to

that for block errors), with an editable text area in which the user can type

some comments about the block. These comments can easily be incorporated

69

Figure 5.2: Block with comment

into the TAIL language so that they are not lost during blocks to text con-

versions. Figure 5.3 gives an example of what the block in Figure 5.2 might

look like in TAIL, with the comments preserved.

(?| This is a global variable declaration. |?
initialize_global <num > to: {42})

Figure 5.3: Example of how comments may be represented in TAIL

5.2.2 Creating YAIL Generators for Statements and Dec-

larations

TAIL code blocks carry the semantics of the AI2 blocks they represent. How-

ever, the semantics of TAIL code blocks has so far only been implemented for

the TAIL expression code block. Support for the TAIL statement and decla-

ration code blocks has yet to be added. The implementation of the semantics

(i.e. the YAIL generators) for these remaining code blocks is straightforward

and is similar to the implementation of the semantics for the TAIL expression

code block.

70

5.3 Near Future

5.3.1 User Studies

As soon as a large enough subset of the most popular AI2 blocks have been

added to TAIL, it is very important that I do at least some preliminary

user testing for different user groups (novice programmers unfamiliar with

blocks programming languages, novice programers with block programming

experience, and more experienced programmers who use AI2).

Preliminary user testing could prove to be very useful in testing details

of the TAIL language before it becomes available to the App Inventor com-

munity. Additionally, it is important and will prove to be very useful to test

whether AI2 users are inclined to start using TAIL to program in AI2. If

there is an inclination to use TAIL, at what stage they are most likely to find

the TAIL code capabilities useful (if at all). Is the TAIL syntax intuitive,

systematic, and predictable as I hope? Is AI2 easier or more difficult to use

with the addition of the text language?

In addition to questions about the language itself, it is also important to

test whether the interface of having additional code blocks in AI2 is useful

or if it is clunky and not likely to be used. However, this is something that

preliminary user testing will not provide, but will require measuring over

time. Thus, it might be useful to have AI2 record when people use the new

text features to see how popular they are.

71

5.3.2 Changing Conversion Architecture to Improve Per-

formance

The current implementation of the TAIL code blocks runs the TAIL parser

constantly, in a loop, when the user connects his/her AI2 project to the An-

droid device for testing. Additionally, the set of AI2 blocks corresponding to

the TAIL code in the TAIL code block are also generated (invisibly), unbe-

knownst to the AI2 user. It is these invisible blocks that are then executed in

when the app is being run on the Android device. This is horribly inefficient

because the parser will execute hundreds of lines of code in order to parse the

TAIL code, and the more complicated the TAIL code, the more parser code

will be executed. This performance issue can easily be improved by changing

the architecture of the implementation slightly. Instead of constantly gener-

ating the AI2 blocks for a given TAIL code block when the app is running

on the Android device, the corresponding AI2 blocks can be invisibly present

at all times, linked to the TAIL code block. App Inventor allows invisible

disabled blocks to be on the workspace. These blocks are skipped at runtime,

and they are invisible to the user.

When a user opts to convert a TAIL code block to AI2 blocks, the hidden

AI2 blocks are simply made visible, and the visible TAIL code block is now

hidden from the user. When the user needs to execute a TAIL code block,

instead of having to run the parser and invisibly generate the set of AI2

blocks to execute in place of the TAIL code block, the YAIL generator for

the TAIL code block can simply run the YAIL generator for the hidden AI2

block that already exists. The invisible AI2 blocks should be updated if the

TAIL code inside the code block has changed. Thus, it is also important to

72

discern when the user has finished typing, because it is impractical to try

and generate the corresponding hidden AI2 block(s) for every character by

character change in the TAIL text. Additional improvement can be made by

tracking which sub-blocks of the hidden AI2 blocks are affected by the change

in the TAIL code, and only converting those sub-blocks that are related to

the most recent change.

The blocks to text conversion can also be improved. Using a process

similar to the one described above, linking pre-generated invisible TAIL code

blocks to existing AI2 blocks, does not add much efficiency, because the

blocks to text conversion process is already very efficient. However, when

converting from blocks to text, it would be more efficient to remember the

set of blocks, so that if no changes have been made to the blocks, the blocks

to text converter need not run again, instead, a cached copy of the text can

be returned.

Making this change will greatly improve the functionality and perfor-

mance of the implementation of the conversion between blocks and text.

Additionally, the improvement mentioned for the text to blocks conversion

fixes a current issue with my implementation.

5.3.3 Converting Screens, Workspaces, and Entire Projects

In order to complete the conversion process, users need to be able to convert

entire workspaces, screens, and projects into TAIL and back into the identical

workspace, screen, or project respectively. Achieving this goal requires many

considerations, discussed below.

73

Converting Screens

When considering the conversion of entire screens, it is important to consider

how individual screens and the code pertaining to the specific screens should

be represented in TAIL.

Converting Workspaces

Converting workspaces provides some interesting design challenges. In Sec-

tion 4.1.3, I mention that only complete and valid code fragments can be

converted from blocks to text. Blocks with empty sockets are errors (invalid)

in AI2, and thus cannot be converted to TAIL in the current implemen-

tation, because they do not form a valid program. However, in order to

convert workspaces, I need to add a TAIL representation for the user’s cur-

rent workspace and I need to allow this workspace representation to include

incomplete blocks such that round trip conversions from blocks to TAIL to

blocks will not lose information about the incomplete blocks users had on

their workspaces. Additionally it is important to consider the other kinds

of information that a workspace provides. A concrete example of such other

kinds of information is the position of the blocks on the workspace. If App

Inventor users organize their workspaces by positioning blocks in certain fash-

ions or collapsing certain blocks, converting the workspace to TAIL would

lose the block positioning and collapsing information. This behavior is un-

desirable, thus TAIL code should include a representation for information

related to block positioning, which blocks are expanded or collapsed, which

blocks are enabled or disabled, which blocks have inline inputs or external

inputs (especially if the block does not have its default input display type),

74

as well as any other important information that may be lost in the conversion

process.

Converting Projects

Converting entire projects is not only limited to the conversion of the AI2

blocks and information from the AI2 blocks editor. This conversion also needs

to keep track of information from the AI2 designer such as which components

have been added to which screens, their arrangement on the screen, and all

of the information associated with these components (if the user has edited

the default initialization of the fields associated with any components). Thus

it is also important to consider how components and associated information

should be translated into TAIL code.

5.3.4 Making Text Readable

It is important to place careful consideration on how the text language should

be presented to the user. Currently TAIL code blocks only allow a single line

of text, but TAIL code can quickly become very long. It would be more

ideal to allow the user to write in multiple lines of text. Accomplishing this

requires some manipulation of the visual component of the AI2 blocks. The

AI2 blocks are DOM elements. The TAIL code blocks, in particular, as well

as other original AI2 blocks have text boxes inside them (HTML input tag

with type attribute set to "text"). The text box only allows a single line of

text, of unrestricted length. This text box can be changed to a text area

(HTML textarea tag), which would allow multiple lines of text. Making

this change requires extending the underlying Blockly framework to allow a

75

text area field for use within the TAIL code blocks. Additionally, it will be

necessary to pretty print (format) the TAIL text that is the result of a blocks

to text conversion.

Section 5.4.2 discusses the idea of creating a text editor for TAIL for a

larger, more long-term project.

5.3.5 Generalizing TAIL Grammar Rules

Because each AI2 block has its own block type, and each AI2 block’s un-

derlying XML is structured a bit differently, trying to conform the TAIL

representations of these AI2 blocks to general parser rules is not ideal. How-

ever, it is strongly worth considering whether it would be feasible and useful

to create a table of unique identifiers for AI2 blocks (whether this identifier

is the block’s title or some other information on the block such as number

of arguments etc.) and the components and general structural requirements

of the underlying XML representation of the block (block type attribute,

mutations, etc.).

5.3.6 Adding Language Abbreviations

Though TAIL syntax is designed to allow for systematic conversions from

blocks to text, in comparison to Venthon with its fewer syntactic markers,

TAIL could be considered verbose and clunky. For this reason, it might be

helpful to add abbreviations to the language. A sample abbreviation might

include removing the curly brace wrapping from around variable references

or literal expressions such as numbers, strings, and booleans. See Figure 5.4

for examples of what the abbreviations could look like.

76

Original TAIL
{{12} + {{5} * {3}}}
{42 * {get x}}

Abbreviation
{12 + 5 * 3}
{42 * x}

Figure 5.4: Sample TAIL abbreviations

Adding abbreviations to the language requires careful thought, as adding

abbreviations may require adding other mechanisms to the language to make

sure that the language is not ambiguous. Using the abbreviation in the first

example in Figure 5.4 would require TAIL to handle operator precedence, as

the removal of the curly braces removes grouping as well.

When thinking about abbreviations and other syntactic sugar, it is im-

portant to consider how these might affect the language isomorphism. Con-

sider the following scenario. An abbreviated arithmetic expression with a

variable reference (e.g. {2 * x + 1}) is converted from TAIL into blocks.

The resulting blocks are converted back to TAIL, yielding the full form of

the variable reference (e.g. {{{2} * {get x}} + {1}}. Though all three of

these representations (the abbreviated variable reference, the AI2 blocks, and

the expanded form of the variable reference) are all semantically equivalent,

the round trip conversion did not yield the original TAIL text that began

the conversion.

This particular problem could perhaps be solved by adding operator

precedence and by equating abbreviated variable references in TAIL to col-

lapsed variable reference blocks in the AI2 blocks language, but it is easy to

imagine that such solutions might not always be possible.

77

5.3.7 Improving Error Handling

The TAIL code blocks produce an error icon whenever there is an error in

the TAIL code inside the editable label of the block. When clicked, the error

icon displays an error message generated directly from ANTLR. In the case

of invalid component, component event, component property, or component

field names, I have specified my own error messages.

It is important to make sure that error messages (whether the ones I have

specified or the ones generated by ANTLR) are actually helpful to the user.

It is best to test this with user studies.

5.3.8 Creating Tutorials & Documentation for AI2 Users

Before this work can be integrated into an official AI2 release, it is necessary

to create tutorials and pages of documentation for both AI2 users and devel-

opers detailing all the specifics of TAIL as well as how to use the additional

AI2 code blocks. Of course, all of the code and functionality needs to be very

well tested and will go through iterations of code reviews as well.

5.4 Far Future

The following sections describe interesting long-term projects that are related

to this work.

78

5.4.1 Venthon, Venti, and More!

Section 2.6.3 describes work I did with a fellow student on Venthon, a textual

programming language for App Inventor with Python-esque syntax. This

work remains incomplete, but would be interesting to finish. It would be

great to offer multiple syntaxes for users to choose from. Venti, (App Inven-

tor + Java) is another possibility. Java, in addition to Python, is another

programming language that is often taught to novices. Venti might prove to

be a helpful stepping stone between App Inventor and the Android SDK for

the users who wish to use some of the features of the Android SDK that are

not available in App Inventor.

5.4.2 TAIL Text Editor

With textual programming languages, it is important to have a good text

editor. It may prove to be helpful to AI2 users to have a TAIL Text Ed-

itor window in addition to the Designer and the Blocks Editor. The text

editor might provide useful features like debugging, syntax highlighting, and

paren/bracket matching to name a few.

5.4.3 Blocks Language for Existing Text Language

Now that I have explored the relationship between blocks programming lan-

guages and textual programming languages by creating a textual language

for an existing blocks language, it might be interesting to approach the rela-

tionship the other way around. What would a blocks language for an existing

textual language such as Python look like? It could be helpful if there were

79

an isomorphism between Python and a new blocks language, and such a

blocks language could be used to introduce novices to programming concepts

in an introductory Computer Science class, with the plans to transition to

the isomorphic textual language a bit later in the course.

5.4.4 Interactive Environment to Edit Corresponding

Blocks and Text Languages Side-By-Side

This project goes hand-in-hand with the project idea outlined in the previ-

ous section. It would be interesting to have an environment in which two

isomorphic languages (a blocks language and a text language) can be edited

side by side. If the edits on one side were reflected in the code on the oppo-

site side in real time, users of such an environment could potentially benefit

from understanding how exactly the two languages relate. It could also help

novice programmers transition from blocks languages to text languages more

easily.

80

Bibliography

[Ai1a] MIT Center for Mobile Learning, App Inventor Classic home page,

http://explore.appinventor.mit.edu/classic, accessed Feb.

24, 2014.

[Ai1b] AI1 usage statistics from http://manhole.mit- appinventor-

experimental.appspot.com/, accessed Feb. 21, 2014.

[Ai2a] MIT Center for Mobile Learning, App Inventor 2 home page, http:

//appinventor.mit.edu, accessed Feb. 24, 2014.

[Ai2b] AI2 usage statistics from http://appinventor.mit.edu/ai2stats/,

accessed Feb. 22, 2014.

[Ant] Terrence Parr, ANTLR 3 website, http : / / www . antlr3 . org/,

accessed Apr 24, 2014.

[Beh] Kara A. Behnke. SLASH: Scratch-based visual programming in Sec-

ond Life for introductory computer science education.

[Bloa] Neil Fraser, Blockly website, https : / / code . google . com / p /

blockly, accessed Feb. 24, 2014.

[Blob] Blockly Code Demo, https : / / blockly - demo . appspot . com /

static/apps/code/index.html?lang=en, accessed Apr 24, 2014.

81

[Bri] Java Bridge website, java.appinventor.org, accessed Apr 24,

2014.

[Cs1] CS117 Inventing Mobile and Apps, Wellesley College introductory

computer science course. http://cs.wellesley.edu/~cs117,

accessed Apr, 24, 2012.

[Dic12] Paul E. Dickson. “Teaching mobile computing using Cabana”. In:

Journal of Computing Sciences in Colleges 27.6 (2012), pp. 128–

134.

[Hop] Hopscotch website, https://www.gethopscotch.com/, accessed

Feb. 24, 2014.

[Hou] code.org, Hour of Code website, http://code.org/learn, accessed

Feb. 24, 2014.

[Leg] The Lego Group, LEGO.com Home, http://www.lego.com/en-

us/, accessed Apr. 24, 2014.

[Ope] OpenBlocks home page, MIT Scheller Teacher Education Program,

http://education.mit.edu/openblocks, accessed Feb 24, 2014.

[Phia] Philip Guo, Proposal to render Android App Inventor visual code

blocks as pseudo-Python code, http://people.csail.mit.edu/

pgbovine/android_to_python/, accessed Apr 24, 2014.

[Phib] Philip Guo, Online demo of Android App Inventor yail to pseudo-

Python renderer, http://people.csail.mit.edu/pgbovine/

android_to_python/yail_to_python_demo.html, accessed Apr

24, 2014.

82

[Pic] The Playful Invention Company, PicoCricket Reference Guide, ver-

sion 1.2a, http : / / www . picocricket . com / pdfs / Reference _

Guide_V1_2a.pdf, accessed Mar. 22, 2012.

[Scra] Scratch project, MIT Lifelong Kindergarten Group, http://scratch.

mit.edu/, accessed Feb 24, 2014.

[Scrb] Marina Myburgh, Printing the scripts for a Scratch program, http:

//itisgr8.blogspot.com/2012/01/printing-scripts-for-

scratch-program.html, accessed Apr 24, 2014.

[Scrc] Scratch Wiki, Block Plugin, http://wiki.scratch.mit.edu/

wiki/Block_Plugin_(2.0), accessed Apr 24, 2014.

[Scrd] Scratch Wiki, Block Plugin Demo, http://blob8108.github.io/

scratchblocks2/, accessed Apr 24, 2014.

[Scre] Scratch Wiki, ScratchBlocks generator, http://blob8108.github.

io/scratchblocks2/generator, accessed Apr 24, 2014.

[Scrf] Scratch Discussion Forums, Convert your scripts to [scratchblocks]

on Scratch 2.0, http : / / scratch . mit . edu / discuss / topic /

14413/, accessed Apr 24, 2014.

[SH] Chazz Sims and Jimmy Hernandez. Code to Block Interface Com-

ponent Extension. Course 6.s063, Final project, https://github.

com/JDub20/CodeBlocks?source=c, accessed Apr 24, 2014.

[Staa] StarLogo TNG project, MIT Scheller Teacher Education Program,

http://education.mit.edu/projects/starlogo-tng, accessed

Feb 24, 2014.

83

[Stab] StarLogo Nova project, MIT Scheller Teacher Education Program,

http://education.mit.edu/projects/starlogo-nova, accessed

Apr 24, 2014.

[Tan] Charlene Lee and Sonali Sastry, Tanner Connect App, Wellesley

College Computer Science Department introductory CS course, Fall

2011. https://sites.google.com/site/cs117charleneandsonali/,

accessed Apr 24, 2014.

[Tyn] Tynker website, http://www.tynker.com/, accessed Feb. 24, 2014.

84

TAIL Grammar

grammar TAIL;
options {

language = JavaScript;
backtrack = true;

}
tokens {

LSQUARE = '[';
RSQUARE = ']';
LCURLY = '{';
RCURLY = '}';
LPAREN = '(';
RPAREN = ') ';
LANGLE = '<';
RANGLE = '>';
DOT = '.';
COMMA = ',';

//Known Keywords
TRUE = 'true ';
FALSE = 'false ';
WHEN = 'when ';
IF = 'if ';
THEN = 'then:';
ELSE = 'else:';
ELSE_IF = 'else_if:';
FOR_EACH = 'for_each ';
DO = 'do:';
RESULT = 'result:';

85

TO = 'to ';
LABEL_TO = 'to:';
CALL = 'call ';
INIT_GLOBAL_VAR = 'initialize_global ';
INIT_LOCAL_VAR = 'initialize_local ';
GET = 'get ';
SET = 'set ';
GLOBAL = 'global ';
IN = 'in:';

// operators
NOT = 'not ';
AND = 'and ';
OR = 'or ';
LEQ = '<=';
GEQ = '>=';
LOGIC_EQ = 'equals ';
LOGIC_NOT_EQ = 'not_equals ';
EQ = '=';
NOT_EQ = '!=';

ADD = '+';
SUBTRACT = '-';
MULTIPLY = '*';
DIVIDE = '/';
POWER = '^';

//Unary Ops (neg will be the same as subtract)
SQRT = 'sqrt ';
ABS = 'abs ';
LOG = 'log ';
E_EXP = 'e^';
ROUND = 'round ';
CEILING = 'ceiling ';
FLOOR = 'floor ';

//Trig Ops
SIN='sin ';
COS='cos ';
TAN='tan ';

86

ASIN='asin ';
ACOS='acos ';
ATAN='atan ';

// Colors
COLOR = 'color ';
MAKE_COLOR = 'make_color ';
BLACK = 'black ';
BLUE = 'blue ';
WHITE = 'white ';
MAGENTA = 'magenta ';
RED = 'red ';
LIGHT_GRAY = 'light_gray ';
PINK = 'pink ';
GRAY = 'gray ';
ORANGE = 'orange ';
DARK_GRAY = 'dark_gray ';
YELLOW = 'yellow ';
GREEN = 'green ';
CYAN = 'cyan ';

//lists
MAKE_LIST = 'make_a_list ';
LIST = 'list ';

// Generic Component Block Stuff
OF_COMPONENT = 'of_component :';
FOR_COMPONENT = 'for_component :';
COMPONENT = 'component ';

//TAIL Block Stuff
TAIL_EXP = 'TAIL_exp ';
TAIL_STMT = 'TAIL_stmt ';

}

@lexer :: members{
var errors = [];

TAILLexer.prototype.emitErrorMessage = function(error) {
//var hdr = getErrorHeader(e);
//var msg = getErrorMessage(e, tokenNames);

87

errors.push(error);
}

TAILLexer.prototype.getErrors = function () {
return errors;

}
}

@members{
var errors = [];

TAILParser.prototype.emitErrorMessage = function(error)
{
//var hdr = getErrorHeader(e);
//var msg = getErrorMessage(e, tokenNames);
errors.push(error);

};
TAILParser.prototype.getErrors = function () {

return errors;
};

TAILParser.prototype.recoverFromMismatchedToken =
function(input , ttype , follow){

throw new
org.antlr.runtime.MismatchedTokenException(ttype ,
input);

}

TAILException = function(msg) {
TAILException.superclass.constructor.call(this , msg);
this.message = msg;

};
org.antlr.lang.extend(TAILException , Error , {
name: "org.antlr.runtime.TAILException"

});

TAILParser.prototype.isValidComponentName =
function(componentName){

var componentInstance =
Blockly.ComponentInstances[componentName];

//from appinventor/blocklyeditor/src/component.js
return (typeof componentInstance == "object" &&
componentInstance.uid != null);

88

};
TAILParser.prototype.isValidComponentFieldName =

function(fields , componentType , fieldName){
//I am using "field" as a general name for event ,
property or method

// fields should be of the form "events", "properties",
or "methods"

var componentInfo =
Blockly.ComponentTypes[componentType]. componentInfo;
var componentFields = componentInfo[fields];
for (var i = 0; i<componentFields.length; i++){

if(componentFields[i].name === fieldName){
return true;

}
}
return false;

};
}

@rulecatch{
catch (re){

throw re;
}

}

/*---
* PARSER RULES
---/

// program
// : (eventHandler | procdef | funcdef |

globalvar_decl)*;

// eventHandler
// : LPAREN WHEN dotted_name (var_decl)? KEYWORD

(statement_block)* RPAREN;

// procdef

89

// : LPAREN TO IDENTIFIER DO (statement_block)* RPAREN;
// should a valid program allow empty procdefs and
event handlers?

// funcdef
// : LPAREN TO IDENTIFIER RESULT expression_block

RPAREN;

// globalvar_decl
// : LPAREN INIT_VAR var_decl 'to:' expression_block;

// var_decl
// : LANGLE IDENTIFIER RANGLE;

// workspace returns [var xml]
// @init{
// $xml = document.createElement ("xml");
// }
// : (statement_block

{$xml.appendChild(statement_block.elt); } |
expression_block
{$xml.appendChild($expression_block.elt);})*

top_level_block returns [var elt]
: LPAREN top_level RPAREN {$elt = $top_level.elt;}
;

top_level returns [var elt]
: global_var_decl {$elt = $global_var_decl.elt;}
| procedure_decl {$elt = $procedure_decl.elt;}
| function_decl {$elt = $function_decl.elt;}
| event_handler {$elt = $event_handler.elt;}
;

global_var_decl returns [var elt]
@init{

$elt = document.createElement ("block");
$elt.setAttribute ("type"," global_declaration ");
$elt.setAttribute (" inline","false");

90

var title = document.createElement ("title");
title.setAttribute ("name","NAME");
var value = document.createElement ("value");
value.setAttribute ("name","VALUE");

}
: INIT_GLOBAL_VAR LANGLE IDENTIFIER RANGLE LABEL_TO

expression_block
{

title.innerHTML = $IDENTIFIER.text;
value.appendChild($expression_block.elt);
$elt.appendChild(title);
$elt.appendChild(value);

}
;

procedure_decl returns [var elt]
@init{

$elt = document.createElement ("block");
$elt.setAttribute ("type"," procedures_defnoreturn ");

var hasMutations = false;
var mutation = document.createElement (" mutation ");
var argsCount = 0;

var name = document.createElement ("title ");
name.setAttribute ("name","NAME");

var var_title_arr = [];
}

: TO LANGLE proc_name=IDENTIFIER RANGLE
{name.innerHTML = $proc_name.text;}

(LANGLE arg_name=IDENTIFIER RANGLE {
hasMutations = true;
var arg = document.createElement ("arg");
arg.setAttribute ("name",$arg_name.text);
mutation.appendChild(arg);
var var_title = document.createElement ("title");
var_title.setAttribute ("name","VAR"+ argsCount);
var_title.innerHTML = $arg_name.text;
var_title_arr.push(var_title);

91

argsCount ++;
})*

DO suite {
if(hasMutations){

$elt.appendChild(mutation);
}
$elt.appendChild(name);
for(var i=0; i<var_title_arr.length; i++){

$elt.appendChild(var_title_arr[i]);
}
var seq = $suite.elt;
seq.setAttribute ("name","STACK");
$elt.appendChild(seq);

}
;

function_decl returns [var elt]
@init{

$elt = document.createElement ("block");
$elt.setAttribute ("type"," procedures_defreturn ");

var hasMutations = false;
var mutation = document.createElement (" mutation ");
var argsCount = 0;

var name = document.createElement ("title ");
name.setAttribute ("name","NAME");

var var_title_arr = [];

var value = document.createElement ("value");
value.setAttribute ("name","RETURN ");

}
: TO LANGLE func_name=IDENTIFIER RANGLE

{name.innerHTML = $func_name.text;}
(LANGLE arg_name=IDENTIFIER RANGLE {

hasMutations = true;
var arg = document.createElement ("arg");
arg.setAttribute ("name",$arg_name.text);
mutation.appendChild(arg);

92

var var_title = document.createElement ("title");
var_title.setAttribute ("name","VAR"+ argsCount);
var_title.innerHTML = $arg_name.text;
var_title_arr.push(var_title);
argsCount ++;

})*
RESULT expression_block {
if(hasMutations){

$elt.appendChild(mutation);
}
$elt.appendChild(name);
for(var i=0; i<var_title_arr.length; i++){

$elt.appendChild(var_title_arr[i]);
}
value.appendChild($expression_block.elt);
$elt.appendChild(value);

}
;

event_handler returns [var elt]
@init{

$elt = document.createElement ("block");
$elt.setAttribute ("type"," component_event ");
var mutation = document.createElement (" mutation ");
// mutation.setAttribute (" component_type ",)
// mutation attributes will be set inside the body of

the rule
// dotted names allow spaces ... which we don 't want

allowed ...
var title = document.createElement ("title");
title.setAttribute ("name"," COMPONENT_SELECTOR ");

}
: WHEN component=IDENTIFIER DOT event=IDENTIFIER
{

var componentName = $component.text;
var eventName = $event.text;
var componentInstance =

Blockly.ComponentInstances[componentName];
var componentType;
if (this.isValidComponentName(componentName)){

93

componentType =
Blockly.Component.instanceNameToTypeName(componentName);

mutation.setAttribute (" component_type",
componentType);

mutation.setAttribute (" instance_name",
componentName);

title.innerHTML = componentName;
} else {

throw new TAILException (" Invalid component name: "
+ componentName);

//this.emitErrorMessage (" Invalid component name: "
+ componentName);

//the parser will continue even after this error
because syntactically this is still correct ...

}
if(this.isValidComponentFieldName (" events",

componentType , eventName)){
mutation.setAttribute (" event_name", eventName);

}else{
throw new TAILException (" Invalid event name: " +

eventName);
//this.emitErrorMessage (" Invalid event name: " +

eventName);
} //no need for else case , we've already added an

error to the errors array above

}
(LANGLE arg=IDENTIFIER RANGLE)* // apparently we don 't

have to put these in the DOM
DO suite
{
var statements = $suite.elt;
statements.setAttribute ("name","DO");

$elt.appendChild(mutation);
$elt.appendChild(title);
$elt.appendChild(statements);

}
;

94

expression_start returns [var xml]
@init{

$xml = document.createElement ("block");
}

: expression_block
{$xml.appendChild($expression_block.elt);}

;

expression_block returns [var elt]
: LCURLY expression RCURLY {$elt = $expression.elt;}
;

suite returns [var elt]
@init{

$elt = document.createElement (" statement "); //TODO
figure out what goes here ???!!!??

//the name attribute of the set of statements will be
set by whatever is calling this rule.

var count = 0;
var prevStatementBlock;
var currentStatementBlock;
var stmt_arr = [];

}
: (statement_block

{
if (count === 0){ // this is the very first

statement
prevStatementBlock = $statement_block.elt;
$elt.appendChild(prevStatementBlock);

}else{ //all of the rest of the statement blocks
var next = document.createElement ("next");
var currentStmt = $statement_block.elt;
next.appendChild(currentStmt);
prevStatementBlock.appendChild(next);
prevStatementBlock = currentStmt;

}
count ++;

})*

//This code used to be inside the parens above

95

// {
// if (count === 0){ // this is the very first

statement
// prevStatementBlock = $statement_block.elt;
// $elt.appendChild(prevStatementBlock);
// }else{ //all of the rest of the statement blocks
// var next = document.createElement ("next");
// var currentStmt = $statement_block.elt;
// next.appendChild(currentStmt);
// prevStatementBlock.appendChild(next);
// prevStatementBlock = currentStmt;
// }
// count ++;
// }
//TODO: stuff needs to go here ... actiony things ...
// {
// for (var i = 0; i<stmt_arr.length; i++){
// currentStatementBlock = stmt_arr[i];
// if(i===0){
// $elt.appendChild(currentStatementBlock);
// prevStatementBlock = currentStatementBlock;
// } else{
// var next = document.createElement ("next");
// next.appendChild(currentStatementBlock);
//

prevStatementBlock.appendChild(currentStatementBlock);
// prevStatementBlock = currentStatementBlock;
// }
// }
// }
; //think about requiring newlines

// {// stmt_arr.push($statement_block.elt);}

statement_block returns [var elt]
: LSQUARE statement RSQUARE
{$elt = $statement.elt;}
;

statement returns [var elt]

96

: if_stmt {$elt = $if_stmt.elt;}
| variable_set_stmt {$elt = $variable_set_stmt.elt;}
| component_stmt {$elt = $component_stmt.elt;}
| tail_stmt {$elt = $tail_stmt.elt;}
;

if_stmt returns [var elt]
@init{

$elt = document.createElement ("block");
$elt.setAttribute (" inline","false");
$elt.setAttribute ("type"," controls_if ");

var mutation = document.createElement (" mutation ");
var mutations = false;
var else_if_count = 0;
var else_count = 0;

}
: IF e1=expression_block {

var val = document.createElement ("value");
val.setAttribute ("name","IF0");
val.appendChild($e1.elt);
$elt.appendChild(val);

}
THEN a=suite{

var then_stmts = $a.elt;
then_stmts.setAttribute ("name", "DO0");
// then_stmts.appendChild($a.elt);
$elt.appendChild(then_stmts);

}
((ELSE_IF {mutations = true; else_if_count ++;}

e2=expression_block{
var value = document.createElement ("value");
value.setAttribute ("name","IF"+ else_if_count);
value.appendChild($e2.elt);
$elt.appendChild(value);

} THEN b=suite {
var else_if_stmts = $b.elt;
else_if_stmts.setAttribute ("name","DO"+ else_if_count);
// else_if_stmts.appendChild($b.elt);
$elt.appendChild(else_if_stmts);

97

})* (ELSE c=suite {
mutations = true;
else_count ++;

var else_stmts = $c.elt;
else_stmts.setAttribute ("name","ELSE");
// else_stmts.appendChild($c.elt);
$elt.appendChild(else_stmts);

})?)?
{

if(mutations){
if (else_if_count !== 0){

mutation.setAttribute (" elseif",else_if_count);
}
if (else_count !== 0){

mutation.setAttribute ("else",else_count);
}
$elt.insertBefore(mutation ,

$elt.firstElementChild);
}

}
;

variable_set_stmt returns [var elt]
@init{

$elt = document.createElement ("block");
$elt.setAttribute ("type"," lexical_variable_set ");
$elt.setAttribute (" inline","false");

var title = document.createElement ("title");
title.setAttribute ("name","VAR");

var var_name = "";

var value = document.createElement ("value");
value.setAttribute ("name","VALUE");

}
: SET (GLOBAL {var_name += "global ";})? IDENTIFIER

{var_name += $IDENTIFIER.text;} LABEL_TO
expression_block {

98

title.innerHTML = var_name;
$elt.appendChild(title);

value.appendChild($expression_block.elt);
$elt.appendChild(value);

}
;

component_stmt returns [var elt]
@init{

$elt = document.createElement ("block");
$elt.setAttribute (" inline","false");
var mutation = document.createElement (" mutation ");
var isGeneric = false;

}
: SET component=IDENTIFIER DOT property=IDENTIFIER

(OF_COMPONENT of_comp=expression_block {isGeneric =
true ;})? LABEL_TO to=expression_block {

$elt.setAttribute ("type"," component_set_get ");
mutation.setAttribute (" set_or_get", "set");

var componentName = $component.text;
var propName = $property.text;

var componentType;
if(isGeneric){

if(! Blockly.ComponentTypes.haveType(componentName)){
throw new TAILException (" Invalid Generic

Component Name: " + componentName);
} else{

componentType = componentName;
}

} else{
if(!this.isValidComponentName(componentName)){

throw new TAILException (" Invalid Component Name:
" + componentName);

} else{
componentType =

Blockly.Component.instanceNameToTypeName(componentName);

99

}
}

mutation.setAttribute (" component_type",componentType);
mutation.setAttribute (" is_generic", isGeneric);

if(!this.isValidComponentFieldName (" properties",
componentType , propName)){

throw new TAILException (" Invalid Component
Property Name: " + propName);

} else {
mutation.setAttribute (" property_name",propName);
if(! isGeneric){

mutation.setAttribute (" instance_name",componentName);
var title = document.createElement ("title");
title.setAttribute ("name"," COMPONENT_SELECTOR ");
title.innerHTML = componentName;
$elt.appendChild(title);

}
var title = document.createElement ("title");
title.setAttribute ("name","PROP");
title.innerHTML = propName;
$elt.appendChild(title);

if(isGeneric){
var componentVal =

document.createElement ("value");
componentVal.setAttribute ("name","COMPONENT ");
componentVal.appendChild($of_comp.elt);
$elt.appendChild(componentVal);

}

var value = document.createElement ("value");
value.setAttribute ("name","VALUE");
value.appendChild($to.elt);
$elt.appendChild(value);

}
$elt.insertBefore(mutation , $elt.firstElementChild);

}
| {var valArr = []; var argCount =0;}

100

CALL component=IDENTIFIER DOT method=IDENTIFIER
(FOR_COMPONENT for_comp=expression_block

{isGeneric=true ;})?
(LABEL arg=expression_block {

var val = document.createElement ("value");
val.setAttribute ("name","ARG"+ argCount);
val.appendChild($arg.elt);
valArr.push(val);

})*{
$elt.setAttribute ("type"," component_method ");

var componentName = $component.text;
var methodName = $method.text;

var componentType;
if(isGeneric){

if(! Blockly.ComponentTypes.haveType(componentName)){
throw new TAILException (" Invalid Generic

Component Name: " + componentName);
} else{

componentType = componentName;
}

} else{
if(!this.isValidComponentName(componentName)){

throw new TAILException (" Invalid Component Name:
" + componentName);

} else{
componentType =

Blockly.Component.instanceNameToTypeName(componentName);
}

}
mutation.setAttribute (" component_type",componentType);
mutation.setAttribute (" is_generic", isGeneric);
if(!this.isValidComponentFieldName (" methods",

componentType , methodName)){
throw new TAILException (" Invalid Component Method

Name: " + methodName);
} else {

mutation.setAttribute (" method_name",methodName);
if(! isGeneric){

101

mutation.setAttribute (" instance_name",componentName);
$elt.appendChild(mutation);

var title = document.createElement ("title");
title.setAttribute ("name"," COMPONENT_SELECTOR ");
title.innerHTML = componentName;
$elt.appendChild(title);

} else{
$elt.appendChild(mutation);
var value = document.createElement ("value");
value.setAttribute ("name","COMPONENT ");
value.appendChild($for_comp.elt);
$elt.appendChild(value);

}
}
for (var i = 0; i<valArr.length; i++){

$elt.appendChild(valArr[i]);
}

}
;

tail_stmt returns [var elt]
@init{

console.log("In the TAIL STMT Rule ...");
$elt = document.createElement ("block");
$elt.setAttribute ("type"," code_write_tail_stmt ");

var title = document.createElement ("title");
title.setAttribute ("name","CODE");

}
: TAIL_STMT statement_block
{

title.innerHTML =
$text.substring($TAIL_STMT.text.length ,$text.length).trim();

$elt.appendChild(title);
}
;

expression returns [var elt]

102

: if_expr {$elt = $if_expr.elt;}
//| do_result_expr {$elt = $do_result_expr.elt;}
| logic_expr {$elt = $logic_expr.elt;}
| not_expr {$elt = $not_expr.elt;}
| compare_eq_expr {$elt = $compare_eq_expr.elt;}
| compare_math_eq_expr {$elt =

$compare_math_eq_expr.elt;}
| compare_math_expr {$elt = $compare_math_expr.elt;}
| math_expr {$elt = $math_expr.elt;}
| init_local_expr {$elt = $init_local_expr.elt;}
| component_expr {$elt = $component_expr.elt;}
| variable_ref_expr {$elt = $variable_ref_expr.elt;}
| color_expr {$elt = $color_expr.elt;}
| list_expr {$elt = $list_expr.elt;}
| tail_expr {$elt = $tail_expr.elt;}
| atom {$elt = $atom.elt;}
;

// assign_stmt
// : SET IDENTIFIER ('to:')? expression_block;

// if_stmt
// : IF expression_block THEN (statement_block)*

(ELSE_IF (statement_block)*)* ELSE (statement_block)*;

/******************* Expressions *****************/

if_expr returns [var elt]
@init{

$elt = document.createElement ("block");
$elt.setAttribute ("type"," controls_choose ");
$elt.setAttribute (" inline","false");

}
: IF a=expression_block THEN b=expression_block ELSE

c=expression_block
{

var testVal = document.createElement ("value");
testVal.setAttribute ("name","TEST");

103

testVal.appendChild($a.elt);

var thenVal = document.createElement ("value");
thenVal.setAttribute ("name"," THENRETURN ");
thenVal.appendChild($b.elt);

var elseVal = document.createElement ("value");
elseVal.setAttribute ("name"," ELSERETURN ");
elseVal.appendChild($c.elt);

$elt.appendChild(testVal);
$elt.appendChild(thenVal);
$elt.appendChild(elseVal);

}
;

// do_result_expr returns [var elt]
// @init{
// $elt = document.createElement ("block");
// Attribute type = document.createAttribute ("type");
// type.value = "controls_do_then_return ";
// Attribute inline =

document.createAttribute (" inline ");
// inline.value = "false";

// $elt.setAttribute(type);
// $elt.setAttribute(inline);
// }
// : 'do' (statement_block)* RESULT expression_block;

//TODO finish this when I add statements

logic_expr returns [var elt]
@init{

$elt = document.createElement ("block");

$elt.setAttribute ("type"," logic_operation ");
$elt.setAttribute (" inline","true");

var operation = "";
}

104

: a = expression_block
(AND {operation ="AND ";}| OR {operation ="OR";})
b = expression_block
{
var title = document.createElement ("title");
title.setAttribute ("name","OP");
title.innerHTML = operation;

var valA = document.createElement ("value");
valA.setAttribute ("name","A");
valA.appendChild($a.elt);

var valB = document.createElement ("value");
valB.setAttribute ("name","B");
valB.appendChild($b.elt);

$elt.appendChild(title);
$elt.appendChild(valA);
$elt.appendChild(valB);

}
;

not_expr returns [var elt]
@init{

$elt = document.createElement ("block");

$elt.setAttribute ("type"," logic_negate ");
$elt.setAttribute (" inline","false");

}
: NOT expression_block
{

var value = document.createElement ("value");
value.setAttribute ("name","BOOL");
value.appendChild($expression_block.elt);

$elt.appendChild(value);
}
;

compare_eq_expr returns [var elt]

105

@init{
$elt = document.createElement ("block");

$elt.setAttribute ("type"," logic_compare ");
$elt.setAttribute (" inline","true");

var operation = "";
}

: a=expression_block (LOGIC_EQ {operation = "EQ";} |
LOGIC_NOT_EQ {operation = "NEQ ";})
b=expression_block

{
var title = document.createElement ("title");

title.setAttribute ("name","OP");
title.innerHTML = operation;

var valA = document.createElement ("value ");
valA.setAttribute ("name","A");
valA.appendChild($a.elt);

var valB = document.createElement ("value ");
valB.setAttribute ("name","B");
valB.appendChild($b.elt);

$elt.appendChild(title);
$elt.appendChild(valA);
$elt.appendChild(valB);

}
;

compare_math_eq_expr returns [var elt] // exactly the
same as compare_eq_expr except for commented line
below and the operators used

@init{
$elt = document.createElement ("block");

$elt.setAttribute ("type"," math_compare ");
//this is the only difference between this rule and

the rule above
$elt.setAttribute (" inline","true");

106

var operation = "";
}

: a=expression_block (EQ {operation = "EQ";} | NOT_EQ
{operation = "NEQ ";}) b=expression_block

{
var title = document.createElement ("title");

title.setAttribute ("name","OP");
title.innerHTML = operation;

var valA = document.createElement ("value ");
valA.setAttribute ("name","A");
valA.appendChild($a.elt);

var valB = document.createElement ("value ");
valB.setAttribute ("name","B");
valB.appendChild($b.elt);

$elt.appendChild(title);
$elt.appendChild(valA);
$elt.appendChild(valB);

}
;

compare_math_expr returns [var elt]
@init{

$elt = document.createElement ("block");

$elt.setAttribute ("type"," math_compare ");
$elt.setAttribute (" inline","true");

var operation = "";
}

: a=expression_block (LANGLE {operation = "LT";}|
RANGLE {operation = "GT";}| LEQ {operation =
"LTE ";}| GEQ {operation = "GTE ";})
b=expression_block

//EQ and NOT_EQ are not listed here , because although
they 're meant for math blocks , you can plug -in non
math blocks in their sockets

107

{
var title = document.createElement ("title");

title.setAttribute ("name","OP");
title.innerHTML = operation;

var valA = document.createElement ("value ");
valA.setAttribute ("name","A");
valA.appendChild($a.elt);

var valB = document.createElement ("value ");
valB.setAttribute ("name","B");
valB.appendChild($b.elt);

$elt.appendChild(title);
$elt.appendChild(valA);
$elt.appendChild(valB);

}
;

math_expr returns [var elt]
: mutable_arith_expr {$elt = $mutable_arith_expr.elt;}
//for add and multiply which allow mutations in

Blockly (TAIL will NOT be allowing mutations)
| non_mutable_arith_expr {$elt =

$non_mutable_arith_expr.elt;}
| special_math_expr {$elt = $special_math_expr.elt;}
//this is for modulo_of , remainder_of , and quotient_of
| unary_math_expr {$elt = $unary_math_expr.elt;}
| math_trig_expr {$elt = $math_trig_expr.elt;}
;

mutable_arith_expr returns [var elt]
@init{

$elt = document.createElement ("block");
//type will get a value inside the rule
$elt.setAttribute (" inline","true");

// initalizing these in advance to be used later
var mutation = document.createElement (" mutation ");
var itemCount = 0;

108

var valArr = [];
//var value;

var addValue = function(element){
var value = document.createElement ("value");
value.setAttribute ("name", "NUM" + itemCount);
value.appendChild(element);
valArr.push(value);
itemCount ++;

}
}

: a=expression_block
{

// value = document.createElement ("value");
// value.setAttribute ("name", "NUM" + itemCount);
// value.appendChild($a.elt);
// valArr.push(value);
// itemCount ++;
addValue($a.elt);

}
((ADD b=expression_block

{
// value = document.createElement ("value");
// value.setAttribute ("name", "NUM" + itemCount);
// value.appendChild($b.elt);
// valArr.push(value);
// itemCount ++;
addValue($b.elt);

}
)+
{$elt.setAttribute ("type","math_add ");}

| (MULTIPLY c=expression_block
{
// value = document.createElement ("value");
// value.setAttribute ("name", "NUM" + itemCount);
// value.appendChild($c.elt);
// valArr.push(value);
// itemCount ++;
addValue($c.elt);

}

109

)+
{$elt.setAttribute ("type"," math_multiply ");}

)
{
mutation.setAttribute (" items",itemCount);
$elt.appendChild(mutation);

for (var i = 0; i<valArr.length; i++){
$elt.appendChild(valArr[i]);

}
}

;

non_mutable_arith_expr returns [var elt]
@init{

$elt = document.createElement ("block");
//type will get a value inside the rule
$elt.setAttribute (" inline","true");

}
: a=expression_block
(

SUBTRACT {
$elt.setAttribute ("type"," math_subtract ");

}
| DIVIDE {

$elt.setAttribute ("type"," math_division ");
}
| POWER {

$elt.setAttribute ("type"," math_power ");
}

)
b=expression_block
{

var valA = document.createElement ("value");
valA.setAttribute ("name","A");
valA.appendChild($a.elt);

var valB = document.createElement ("value ");
valB.setAttribute ("name","B");
valB.appendChild($b.elt);

110

$elt.appendChild(valA);
$elt.appendChild(valB);

}
;

special_math_expr returns [var elt]
@init{

$elt = document.createElement ("block");
$elt.setAttribute ("type"," math_divide ");
$elt.setAttribute (" inline","true");

var operation = "";
}

:('modulo_of ' {operation =" MODULO ";}
| 'remainder_of ' {operation =" REMAINDER ";}
| 'quotient_of ' {operation =" QUOTIENT ";})

a=expression_block DIVIDE b=expression_block
{

var title = document.createElement ("title");
title.setAttribute ("name","OP");
title.innerHTML = operation;

var dividend = document.createElement ("value");
dividend.setAttribute ("name","DIVIDEND ");
dividend.appendChild($a.elt);

var divisor = document.createElement ("value");
divisor.setAttribute ("name","DIVISOR ");
divisor.appendChild($b.elt);

$elt.appendChild(title);
$elt.appendChild(dividend);
$elt.appendChild(divisor);

}
;

unary_math_expr returns [var elt]
@init{

$elt = document.createElement ("block");
$elt.setAttribute ("type"," math_single ");

111

$elt.setAttribute (" inline","false");

var operation = "";

}
: op=(SQRT {operation = "ROOT ";}

| ABS {operation = "ABS";}
| SUBTRACT {operation = "NEG";}
| LOG {operation = "LN";}
| E_EXP {operation = "EXP";}
| ROUND {operation = "ROUND ";}
| CEILING {operation = "CEILING ";}
| FLOOR {operation = "FLOOR ";})

expression_block
{

var title = document.createElement ("title");
title.setAttribute ("name","OP");
title.innerHTML = operation;

var value = document.createElement ("value");
value.setAttribute ("name","NUM");
value.appendChild($expression_block.elt);

$elt.appendChild(title);
$elt.appendChild(value);

}
;

math_trig_expr returns [var elt]
@init{

$elt = document.createElement ("block");
$elt.setAttribute ("type","math_trig ");
$elt.setAttribute (" inline","false");

var operation = "";
}

: (SIN {operation ="SIN";}
|COS {operation ="COS ";}
|TAN {operation ="TAN ";}
|ASIN {operation ="ASIN ";}

112

|ACOS {operation ="ACOS ";}
|ATAN {operation ="ATAN ";})

expression_block
{

var title = document.createElement ("title");
title.setAttribute ("name","OP");
title.innerHTML = operation;

var value = document.createElement ("value");
value.setAttribute ("name","NUM");
value.appendChild($expression_block.elt);

$elt.appendChild(title);
$elt.appendChild(value);

}
;

init_local_expr returns [var elt]
@init{

$elt = document.createElement ("block");
$elt.setAttribute ("type"," local_declaration_expression ");
var mutation = document.createElement (" mutation ");
var localName;
var titleArr = [];
var title;
var count = 0;
var valArr = [];
var value;

}
: INIT_LOCAL_VAR (LANGLE IDENTIFIER RANGLE LABEL_TO

a=expression_block
{

localName = document.createElement (" localname ");
localName.setAttribute ("name",$IDENTIFIER.text);
mutation.appendChild(localName);

title = document.createElement ("title");
title.setAttribute ("name","VAR" + count);
title.innerHTML = $IDENTIFIER.text;
titleArr.push(title);

113

value = document.createElement ("value");
value.setAttribute ("name", "DECL"+count);
value.appendChild($a.elt);
valArr.push(value);
count ++;

})+
{
$elt.appendChild(mutation);
titleArr.forEach(function(title){

$elt.appendChild(title);
});
valArr.forEach(function(value){

$elt.appendChild(value);
});

}
IN b=expression_block
{
var returnVal = document.createElement ("value");
returnVal.setAttribute ("name","RETURN ");
returnVal.appendChild($b.elt);
$elt.appendChild(returnVal);

}
;

variable_ref_expr returns [var elt]
@init{

$elt = document.createElement ("block");
$elt.setAttribute ("type"," lexical_variable_get ");

var variable = "";
}

: (GET)? (GLOBAL {variable += "global ";})?
IDENTIFIER //the space after global is very
important

{
variable += $IDENTIFIER.text;
var title = document.createElement ("title");
title.setAttribute ("name","VAR");

114

title.innerHTML = variable;

$elt.appendChild(title);
}
;

color_expr returns [var elt]
@init{

$elt = document.createElement ("block");
var title = document.createElement ("title");
title.setAttribute ("name","COLOR");

var type = "color_ ";
}

: COLOR ((BLACK {title.innerHTML ="#000000"; type +=
$BLACK.text;}

| BLUE {title.innerHTML ="#0000 ff"; type +=
$BLUE.text;}
| WHITE {title.innerHTML ="# ffffff "; type +=

$WHITE.text;}
| MAGENTA {title.innerHTML ="# ff00ff "; type +=

$MAGENTA.text;}
| RED {title.innerHTML ="# ff0000 "; type +=

$RED.text;}
| LIGHT_GRAY {title.innerHTML ="# cccccc "; type +=

$LIGHT_GRAY.text;}
| PINK {title.innerHTML ="# ffafaf "; type +=

$PINK.text;}
| GRAY {title.innerHTML ="#888888"; type +=

$GRAY.text;}
| ORANGE {title.innerHTML ="# ffc800 "; type +=

$ORANGE.text;}
| DARK_GRAY {title.innerHTML ="#444444"; type +=

$DARK_GRAY.text;}
| YELLOW {title.innerHTML ="# ffff00 "; type +=

$YELLOW.text;}
| GREEN {title.innerHTML ="#00 ff00"; type +=

$GREEN.text;}
| CYAN {title.innerHTML ="#00 ffff"; type +=

$CYAN.text;}

115

)
{

$elt.setAttribute ("type",type);
$elt.appendChild(title);

}
| HEX // custom_color
{
title.innerHTML = $HEX.text;
$elt.setAttribute ("type"," color_black ");
// because there 's no other default color type
$elt.appendChild(title);

}
)

| MAKE_COLOR expression_block
{

$elt.setAttribute ("type"," color_make_color ");
$elt.setAttribute (" inline","false");
var value = document.createElement ("value");
value.setAttribute ("name","COLORLIST ");
value.appendChild($expression_block.elt);
$elt.appendChild(value);

}
;

list_expr returns [var elt]
@init{

$elt = document.createElement ("block");
$elt.setAttribute ("type"," lists_create_with ");

var mutation = document.createElement (" mutation ");
var item_count = 0;

var val_block_arr = [];
var val_block;

}
: (LIST | MAKE_LIST)
(options {greedy=true ;}: expression_block

{
item_count ++;
val_block = document.createElement ("value");

116

val_block.setAttribute ("name", ("ADD" +
(item_count -1)));
val_block.appendChild($expression_block.elt);
val_block_arr.push(val_block);

}
)*

{
mutation.setAttribute (" items",item_count);
$elt.appendChild(mutation);
val_block_arr.forEach(function (block) {

$elt.appendChild(block);
});

}
;

/*(options {k=2;}: COMMA b=expression_block
{
item_count ++;
val_block = document.createElement ("block");
val_block.setAttribute ("name", "ADD" +

(item_count -1));
val_block.appendChild($b.elt);
val_block_arr.add(val_block);

}
)?*/

component_expr returns [var elt]
@init{

$elt = document.createElement ("block");
var mutation = document.createElement (" mutation ");
var isComponentSetGet = false;
var isGeneric = false;
var value;

}
: COMPONENT component=IDENTIFIER {

$elt.setAttribute ("type"," component_component_block ");
var componentName = $component.text;
var componentType;
if(!this.isValidComponentName(componentName)){

117

throw new TAILException (" Invalid Component Name: "
+ componentName);

} else{
componentType =

Blockly.Component.instanceNameToTypeName(componentName);
}

mutation.setAttribute (" component_type",componentType);
mutation.setAttribute (" instance_name",

componentName);
$elt.appendChild(mutation);

var title = document.createElement ("title");
title.setAttribute ("name"," COMPONENT_SELECTOR ");
title.innerHTML = componentName;
$elt.appendChild(title);

}

| component=IDENTIFIER DOT property=IDENTIFIER
{isComponentSetGet = true;} (OF_COMPONENT
expression_block {isGeneric = true ;})?

{
var componentName = $component.text;
var propName = $property.text;

// figure out component type based on whether this is
a generic component block or not

var componentType;
if(isGeneric){

$elt.setAttribute (" inline","false"); //an extra
thing to put in the DOM only in the case where
isGeneric

value = document.createElement ("value");
value.setAttribute ("name","COMPONENT ");
value.appendChild($expression_block.elt);

if(! Blockly.ComponentTypes.haveType(componentName)){
throw new TAILException (" Invalid Generic

Component Name: " + componentName);
} else{

118

componentType = componentName;
}

} else{
if(!this.isValidComponentName(componentName)){

throw new TAILException (" Invalid Component Name:
" + componentName);

} else{
componentType =

Blockly.Component.instanceNameToTypeName(componentName);
}

}
mutation.setAttribute (" component_type",componentType);

if(! isGeneric){
mutation.setAttribute (" instance_name",componentName);

var compSelectorTitle =
document.createElement ("title");

compSelectorTitle.setAttribute ("name"," COMPONENT_SELECTOR ");
compSelectorTitle.innerHTML = componentName;
$elt.appendChild(compSelectorTitle);

}
if(isComponentSetGet){

$elt.setAttribute ("type"," component_set_get ");
mutation.setAttribute (" set_or_get ","get");
if(!this.isValidComponentFieldName (" properties",

componentType , propName)){
throw new TAILException (" Invalid Component

Property Name: " + propName);
}else{

mutation.setAttribute (" property_name",propName);
var title = document.createElement ("title");
title.setAttribute ("name","PROP");
title.innerHTML = propName;
$elt.appendChild(title);

}
mutation.setAttribute (" is_generic",isGeneric);

}else{
$elt.setAttribute ("type"," component_component_block ");

}

119

$elt.insertBefore(mutation , $elt.firstElementChild);
if(isGeneric){

$elt.appendChild(value);
}

}
;

tail_expr returns [var elt] //DOES THIS WORK??
@init{

$elt = document.createElement ("block");
$elt.setAttribute ("type"," code_write_tail_exp ");

var title = document.createElement ("title");
title.setAttribute ("name","CODE");

}
: TAIL_EXP expression_block
{

title.innerHTML =
$text.substring($TAIL_EXP.text.length ,$text.length).trim();

$elt.appendChild(title);
}
;

atom returns [var elt]
@init{

$elt = document.createElement ("block");

var title = document.createElement ("title");
}

: NUMBER {
$elt.setAttribute ("type"," math_number ");

title.setAttribute ("name","NUM");
title.innerHTML = $NUMBER.text;
$elt.appendChild(title);

}
| STRING {

$elt.setAttribute ("type","text");

120

title.setAttribute ("name","TEXT");
var text = $STRING.text;
title.innerHTML = text.substring(1,text.length -1);
$elt.appendChild(title);

}
| TRUE {

$elt.setAttribute ("type"," logic_boolean ");

title.setAttribute ("name","BOOL");
title.innerHTML = "TRUE";
$elt.appendChild(title);

}
| FALSE {

$elt.setAttribute ("type"," logic_boolean ");

title.setAttribute ("name","BOOL");
title.innerHTML = "FALSE";
$elt.appendChild(title);

}
;

dotted_name
: IDENTIFIER '.' IDENTIFIER;

/*--
* LEXER RULES
---/

fragment
ALPHA : ('a' .. 'z' | 'A' .. 'Z');

fragment
DIGIT : ('0' .. '9');

fragment
ALPHA_NUM

: ALPHA | DIGIT
;

121

fragment
ESC

: '\\' .
;

NUMBER : (DIGIT* DOT DIGIT+ | DIGIT+ (DOT)?);

//TODO: CHECK AI2 rules for Identifiers
IDENTIFIER : (ALPHA | '_')

(ALPHA | '_' | DIGIT)*; // identifiers cannot
start with numbers

LABEL : (ALPHA | '_')+ ':';

KEYWORD : (ALPHA | '_')* ':';

STRING
: ('\'' (ESC | ~('\\' | '\n' | '\''))* '\'')
| ('"' (ESC | ~('\\' | '\n' | '"'))* '"')
;

HEX
: '#' ALPHA_NUM ALPHA_NUM ALPHA_NUM ALPHA_NUM

ALPHA_NUM ALPHA_NUM
;

WS : (' '
| '\t'
| '\r'
| '\n'
) {$channel=HIDDEN ;}

;

122

TAIL Code Blocks

/**
* Visual Blocks Language
*
* Copyright 2012 Google Inc.
* http :// code.google.com/p/blockly/
*
* Licensed under the Apache License , Version 2.0 (the "

License ");
* you may not use this file except in compliance with

the License.
* You may obtain a copy of the License at
*
* http ://www.apache.org/licenses/LICENSE -2.0
*
* Unless required by applicable law or agreed to in

writing , software
* distributed under the License is distributed on an "AS

IS" BASIS ,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , either

express or implied.
* See the License for the specific language governing

permissions and
* limitations under the License.
*/

/**
* @fileoverview Blocks for textual languages in App

Inventor
* @author kchadha@wellesley.edu (Karishma Chadha)

123

*/

if (! Blockly.Language) Blockly.Language = {};

if (! Blockly.Language.code) Blockly.Language.code = {};

Blockly.Language.code.parser = function(input){
var cstream = new org.antlr.runtime.ANTLRStringStream(

input);
var lexer = new TAILLexer(cstream);
var tstream = new org.antlr.runtime.CommonTokenStream(

lexer);
var parser = new TAILParser(tstream);
return parser;

};

Blockly.Language.code_write_tail_exp = {
category: Blockly.LANG_CATEGORY_CODE ,
init: function (){

this.setColour(Blockly.CODE_CATEGORY_HUE);
this.appendDummyInput ().appendTitle('TAIL exp ').

appendTitle(
new Blockly.FieldCodeBlockInput ('{"write TAIL exp

"}'), 'CODE ');
this.setOutput(true , null);
this.setTooltip(Blockly.
LANG_CODE_WRITE_TAIL_EXP_TOOLTIP);

this.errors = [{name:" checkANTLRErrors "}];
this.appendCollapsedInput ().appendTitle('TAIL ', '
COLLAPSED_TEXT ');

},
onchange: Blockly.WarningHandler.checkErrors ,
typeblock: [{ translatedName: Blockly.
LANG_CODE_WRITE_TAIL_EXP }],

prepareCollapsedText: function (){
var textToDisplay = this.getTitleValue('CODE ');
if (textToDisplay.length > 8) //8 is a length of 5
plus 3 dots
textToDisplay = textToDisplay.substring(0, 5) +

'...';

124

this.getTitle_('COLLAPSED_TEXT ').setText(
textToDisplay , 'COLLAPSED_TEXT ');

},
codeCustomContextMenu: function(options){

var myBlock = this;
var convertToBlocksOption = {text: "Convert to Blocks

"};
if(!this.errorIcon && !this.disabled){

convertToBlocksOption.enabled = true;
} else{

convertToBlocksOption.enabled = false;
}
convertToBlocksOption.callback = function (){

Blockly.Language.code_write_tail_exp.
generateAIExpressionBlock(myBlock ,true);

myBlock.dispose(true ,false);
};
options.push(convertToBlocksOption);

}
};

/**
* This function generates the new blocks equivalent to

the tail expression block.
* @param {!Sting} tailText The TAIL text that needs to be

parsed. This is not always
* the same as the current tyext in the block (see

generator for this block).
* @param {! Blockly.Block} myBlock The TAIL expression

block to convert into AI blocks.
* @param {! Boolean} keepConnections If true , the new

blocks will replace the old blocks
* and keep the TAIL blocks connections (if it is

connected to anything). If false , the
* connections will not be kept (this is for use in the

generator , where we essentially
* want to generate invisible blocks , but instead we

generate blocks elsewhere in the
* workspace and dispose of them when we 're done using

them).

125

* @return {! Blockly.Block} Returns the root block of the
generated set of blocks.

*/
Blockly.Language.code_write_tail_exp.

generateAIExpressionBlock = function(myBlock ,
keepConnections){

try{
var parser = Blockly.Language.code.parser(myBlock.

getTitleValue('CODE '));
var newBlockDom = parser.expression_block ();

// console.log("New Block Dom: \n" + Blockly.Xml.
domToPrettyText(newBlockDom));

var newBlock = Blockly.Xml.domToBlock_(myBlock.
workspace , newBlockDom);

if(keepConnections){Blockly.BlocklyEditor.
repositionNewlyGeneratedBlock(myBlock ,newBlock);}

return newBlock;
} catch (error){

if (!(error instanceof org.antlr.runtime.
RecognitionException)){

throw error;
}

}
};

//if the tail block is connected to another block ,
replace the connections for the newly generated
blocks

// if(keepConnections && myBlock.outputConnection.
targetConnection){

// var otherBlockConnection = myBlock.outputConnection
.targetConnection;

// var newConnection = newBlock.outputConnection;
// myBlock.unplug(true ,true);
// otherBlockConnection.connect(newConnection);
// } else { //else move new generated blocks to
location of myBlock

// // Move the duplicate next to the old block.

126

// var xy = myBlock.getRelativeToSurfaceXY ();
// // if (Blockly.RTL) {
// // xy.x -= Blockly.SNAP_RADIUS;
// // } else {
// // xy.x += Blockly.SNAP_RADIUS;
// // }
// // xy.y += Blockly.SNAP_RADIUS * 2;
// newBlock.moveBy(xy.x, xy.y);
// }

Blockly.Language.code_write_tail_stmt = {
category: Blockly.LANG_CATEGORY_CODE ,
init: function (){

this.setColour(Blockly.CODE_CATEGORY_HUE);
this.appendDummyInput ().appendTitle('TAIL stmt ').

appendTitle(
new Blockly.FieldCodeBlockInput ('[write TAIL stmt

]'), 'CODE ');
this.setPreviousStatement(true);
this.setNextStatement(true);
//this.setTooltip(Blockly.
LANG_CODE_WRITE_TAIL_EXP_TOOLTIP);

this.errors = [{name:" checkANTLRErrors "}];
this.appendCollapsedInput ().appendTitle('TAIL ', '
COLLAPSED_TEXT ');

},
onchange: Blockly.WarningHandler.checkErrors ,
typeblock: [{ translatedName: Blockly.
LANG_CODE_WRITE_TAIL_STMT }],

prepareCollapsedText: function (){
var textToDisplay = this.getTitleValue('CODE ');
if (textToDisplay.length > 8) //8 is a length of 5
plus 3 dots
textToDisplay = textToDisplay.substring(0, 5) +

'...';
this.getTitle_('COLLAPSED_TEXT ').setText(
textToDisplay , 'COLLAPSED_TEXT ');

},
// codeStatementSequenceCustomContextMenu: function(
options){

127

// var myBlock = this;
// var convertToBlocksOption = {text: "Convert
Statement Sequence to Blocks "};

// if(!this.errorIcon && !this.disabled){
// convertToBlocksOption.enabled = true;
// } else{
// convertToBlocksOption.enabled = false;
// }
// convertToBlocksOption.callback = function (){
// Blockly.Language.code_write_tail_stmt.
generateAIStatementBlock(myBlock ,false ,true);

// myBlock.dispose(true ,false);
// };
// options.push(convertToBlocksOption);
// },
codeCustomContextMenu: function(options){

var myBlock = this;
var convertToBlocksOption = {text: "Convert to Blocks

"};
if(!this.errorIcon && !this.disabled){

convertToBlocksOption.enabled = true;
} else{

convertToBlocksOption.enabled = false;
}
convertToBlocksOption.callback = function (){

Blockly.Language.code_write_tail_stmt.
generateAIStatementBlock(myBlock ,true);

myBlock.dispose(false ,false); //we don 't want to
use the healstack option here
};
options.push(convertToBlocksOption);

}
};

/**
* This function generates the new blocks equivalent to

the tail expression block.
* @param {!Sting} tailText The TAIL text that needs to be

parsed. This is not always

128

* the same as the current text in the block (see
generator for this block).

* @param {! Blockly.Block} myBlock The TAIL expression
block to convert into AI blocks.

* @param {! Boolean} keepConnections If true , the new
blocks will replace the old blocks

* and keep the TAIL blocks connections (if it is
connected to anything). If false , the

* connections will not be kept (this is for use in the
generator , where we essentially

* want to generate invisible blocks , but instead we
generate blocks elsewhere in the

* workspace and dispose of them when we 're done using
them).

* @return {! Blockly.Block} Returns the root block of the
generated set of blocks.

*/

Blockly.Language.code_write_tail_stmt.
generateAIStatementBlock = function(myBlock ,
keepConnections){

try{
var parser = Blockly.Language.code.parser(myBlock.

getTitleValue('CODE '));
var newBlockDom = parser.statement_block ();
var newBlock = Blockly.Xml.domToBlock_(myBlock.

workspace , newBlockDom);

if(keepConnections){
Blockly.BlocklyEditor.repositionNewlyGeneratedBlock

(myBlock ,newBlock);
}
return newBlock;

} catch (error){
if (!(error instanceof org.antlr.runtime.

RecognitionException)){
throw error;

}
}

};

129

// var reposition = true; // variable which indicates
whether the newly generated block(s) need to be
repositioned or not

// //if the tail block is connected to another block ,
replace the connections for the newly generated
blocks

// if(keepConnections){
// if(myBlock.previousConnection.targetConnection){
// //no need to reposition if the block is connected

to a previous block
// //(this if statement will handle putting the block

in the correct place)
// reposition = false;
// var previousBlockConnection = myBlock.

previousConnection.targetConnection;
// var newConnection = newBlock.previousConnection;
// myBlock.unplug(false ,false);
// previousBlockConnection.connect(newConnection);
// }
// if(myBlock.nextConnection.targetConnection){
// //if this block only has a next block but not a

previous block , we do need to reposition
// //if this block did have a previous block , we don 't

need to reposition , but the above if
// // statement will take care of that , so we don 't

need to change the value of reposition here
// var nextBlockConnection = myBlock.nextConnection.

targetConnection;
// var newConnection = newBlock.nextConnection;
// // disconnecting child of myBlock so that we can

connect it to the newly generated block
// var nextBlock = myBlock.nextConnection.

targetBlock ();
// nextBlock.unplug(false ,false);
// newConnection.connect(nextBlockConnection);
// }
// }
// if(reposition){

130

// var xy = myBlock.getRelativeToSurfaceXY ();
// newBlock.moveBy(xy.x, xy.y);
// }
// // if(! newBlock.previousConnection.targetConnection)

{ //else move new generated blocks to location of
myBlock

// // //this doesn 't need to happen for a tail stmt
block that has a previous block connected ,

// // //but it does need to happen for a block that
doesn 't, but does have a next block ,

// // //so we should just do this in all cases to be
safe

// // // Move the duplicate next to the old block.
// // // console.log("WHAT IS HAPPENING ????!!!!!!");
// // var xy = myBlock.getRelativeToSurfaceXY ();
// // newBlock.moveBy(xy.x, xy.y);
// // }

Blockly.Language.code_write_tail_decl = {
category: Blockly.LANG_CATEGORY_CODE ,
init: function (){

this.setColour(Blockly.CODE_CATEGORY_HUE);
this.appendDummyInput ().appendTitle('TAIL decl ').

appendTitle(
new Blockly.FieldCodeBlockInput ('(write TAIL decl)

'), 'CODE ');
//this.setTooltip(Blockly.
LANG_CODE_WRITE_TAIL_EXP_TOOLTIP);

this.errors = [{name:" checkANTLRErrors "}];
this.appendCollapsedInput ().appendTitle('TAIL ', '
COLLAPSED_TEXT ');

},
onchange: Blockly.WarningHandler.checkErrors ,
typeblock: [{ translatedName: Blockly.
LANG_CODE_WRITE_TAIL_DECL }],

prepareCollapsedText: function (){
var textToDisplay = this.getTitleValue('CODE ');
if (textToDisplay.length > 8) //8 is a length of 5
plus 3 dots

131

textToDisplay = textToDisplay.substring(0, 5) +
'...';

this.getTitle_('COLLAPSED_TEXT ').setText(
textToDisplay , 'COLLAPSED_TEXT ');

},
// codeStatementSequenceCustomContextMenu: function(
options){

// var myBlock = this;
// var convertToBlocksOption = {text: "Convert
Statement Sequence to Blocks "};

// if(!this.errorIcon && !this.disabled){
// convertToBlocksOption.enabled = true;
// } else{
// convertToBlocksOption.enabled = false;
// }
// convertToBlocksOption.callback = function (){
// Blockly.Language.code_write_tail_stmt.
generateAIStatementBlock(myBlock ,false ,true);

// myBlock.dispose(true ,false);
// };
// options.push(convertToBlocksOption);
// },
codeCustomContextMenu: function(options){

var myBlock = this;
var convertToBlocksOption = {text: "Convert to Blocks

"};
if(!this.errorIcon && !this.disabled){

convertToBlocksOption.enabled = true;
} else{

convertToBlocksOption.enabled = false;
}
convertToBlocksOption.callback = function (){

Blockly.Language.code_write_tail_stmt.
generateAITopLevelBlock(myBlock ,true);

myBlock.dispose(false ,false); //we don 't want to
use the healstack option here
};
options.push(convertToBlocksOption);

}
};

132

Blockly.Language.code_write_tail_stmt.
generateAITopLevelBlock = function(myBlock ,
keepConnections){

try{
var parser = Blockly.Language.code.parser(myBlock.

getTitleValue('CODE '));
var newBlockDom = parser.top_level_block ();
console.log("DOM: " + Blockly.Xml.domToPrettyText(

newBlockDom));
var newBlock = Blockly.Xml.domToBlock_(myBlock.

workspace , newBlockDom);

if(keepConnections){
Blockly.BlocklyEditor.repositionNewlyGeneratedBlock

(myBlock ,newBlock);
}
return newBlock;

} catch(error){
if (!(error instanceof org.antlr.runtime.

RecognitionException)){
throw error;

}
}

};

133

YAIL Code Generator

Blockly.Yail = Blockly.Generator.get('Yail ');
var oldTailText;
var expCode;
Blockly.Yail.code_write_tail_exp = function () {
var tailText = this.getTitleValue('CODE ');
if(! oldTailText){
oldTailText = tailText;

}else{
if(tailText === oldTailText){

return expCode;
}
else{

oldTailText = tailText;
}

}
var canParse = this.getTitle_('CODE ').textDoneChanging;
if(! canParse){ return expCode; }
newBlocks = Blockly.Language.code_write_tail_exp.

generateAIExpressionBlock(this , false);
var code = Blockly.Yail.blockToCode(newBlocks);
newBlocks.dispose(true , false);
expCode = code;
return code;

};

134

Blocks to Text Converter

// Blocks -> Text Converter

Blockly.BlocksToTextConverter = {};

Blockly.BlocksToTextConverter.expressionBlocks = ["
controls_choose "," logic_operation "," logic_negate ","
logic_compare "," math_compare",

"math_add", "math_multiply", "math_subtract", "
math_division", "math_power", "math_divide", "
math_single", "math_abs", "math_neg",

"math_round", "math_ceiling", "math_floor", "math_trig",
"math_cos", "math_tan", "local_declaration_expression
", "lexical_variable_get", "color_black",

"color_blue", "color_white", "color_magenta", "color_red
", "color_light_gray", "color_pink", "color_gray", "
color_orange",

"color_dark_gray", "color_yellow", "color_green", "
color_cyan", "color_make_color", "lists_create_with",
"math_number", "text",

"logic_boolean", "logic_false", "component_set_get", "
code_write_tail_exp "];

Blockly.BlocksToTextConverter.statementBlocks = ["
controls_if "," lexical_variable_set ","
code_write_tail_stmt", "local_declaration_statement",
"component_set_get "];

Blockly.BlocksToTextConverter.topLevelBlocks = ["
global_declaration "," procedures_defnoreturn ","

135

procedures_defreturn "," component_event", , "
procedures_callreturn",];

Blockly.BlocksToTextConverter.tailText;

Blockly.BlocksToTextConverter.type = "";

Blockly.BlocksToTextConverter.
getImmediateChildrenByTagName = function(element ,
tagName){

var elementsWithTag = [];
var current = element.firstElementChild;
while (!! current){

if(current.nodeName.toLowerCase () === tagName.
toLowerCase ()){

elementsWithTag.push(current);
}
current = current.nextElementSibling;

}
return elementsWithTag;

}

Blockly.BlocksToTextConverter.checkEmptySockets =
function(block){

if(Blockly.WarningHandler.checkEmptySockets.call(block)
){

return true;
} else{ //check decendants of block

var children = block.getChildren ();
for (var i = 0; i<children.length; i++){

if(Blockly.WarningHandler.checkEmptySockets.call(
children[i])){

return true;
}

}
return false;

}
}

136

Blockly.BlocksToTextConverter.blockToTAIL = function(
block){

var root = Blockly.Xml.blockToDom_(block);
Blockly.BlocksToTextConverter.tailText = "";
// translate root node
Blockly.BlocksToTextConverter.translateBlock(root);

var tailBlockDom = document.createElement ("block");
tailBlockDom.setAttribute ("type", Blockly.

BlocksToTextConverter.type);
var title = document.createElement ("title");
title.setAttribute ("name","CODE");
title.innerHTML = Blockly.BlocksToTextConverter.

tailText;
tailBlockDom.appendChild(title);

var tailBlock = Blockly.Xml.domToBlock_(block.workspace
,tailBlockDom);

return tailBlock;
};

Blockly.BlocksToTextConverter.translateBlock = function(
element){

var tagName = element.nodeName.toLowerCase ();
if(tagName === "block"){

var type = element.getAttribute ("type");
if(type === "component_set_get "){

var mutations = Blockly.BlocksToTextConverter.
getImmediateChildrenByTagName(element , "mutation
");

var mutation;
if(mutations.length !== 0){

mutation = mutations [0];
}
if(mutation.getAttribute (" set_or_get ") === "get"){

Blockly.BlocksToTextConverter.type = "
code_write_tail_exp ";

Blockly.BlocksToTextConverter.
translateExpressionBlock(element);

} else{

137

Blockly.BlocksToTextConverter.type = "
code_write_tail_stmt ";

Blockly.BlocksToTextConverter.
translateStatementBlock(element);

}

}
else{

if(Blockly.BlocksToTextConverter.expressionBlocks.
indexOf(type) !== -1){

// element is an expression block
Blockly.BlocksToTextConverter.type = "
code_write_tail_exp ";

Blockly.BlocksToTextConverter.
translateExpressionBlock(element);

} else if(Blockly.BlocksToTextConverter.
statementBlocks.indexOf(type) !== -1){
// element is a statement block
Blockly.BlocksToTextConverter.type = "

code_write_tail_stmt ";
Blockly.BlocksToTextConverter.

translateStatementBlock(element);
} else if(Blockly.BlocksToTextConverter.

topLevelBlocks.indexOf(type) !== -1){
// element is a top level block
Blockly.BlocksToTextConverter.type = "

code_write_tail_decl ";
Blockly.BlocksToTextConverter.

translateTopLevelBlock(element);
} else{
//do nothing
console.log("I'm getting not getting an expression ,

statement , or top level block .")
}

}
}

}

/************** Expression Blocks **************/

138

Blockly.BlocksToTextConverter.translateExpressionBlock =
function(element){

var elementType = element.getAttribute ("type");
// expression block
Blockly.BlocksToTextConverter.tailText += '{';
Blockly.BlocksToTextConverter [" translate_" +

elementType].call(this , element);
Blockly.BlocksToTextConverter.tailText += '}';

}

Blockly.BlocksToTextConverter.translate_controls_choose =
function(element){

var children = element.children;
var ifBlock = children.namedItem ("TEST").

firstElementChild;
var thenBlock = children.namedItem (" THENRETURN ").

firstElementChild;
var elseBlock = children.namedItem (" ELSERETURN ").

firstElementChild;

Blockly.BlocksToTextConverter.tailText += 'if ';
Blockly.BlocksToTextConverter.translateExpressionBlock(

ifBlock);
Blockly.BlocksToTextConverter.tailText += ' then: ';
Blockly.BlocksToTextConverter.translateExpressionBlock(

thenBlock);
Blockly.BlocksToTextConverter.tailText += ' else: ';
Blockly.BlocksToTextConverter.translateExpressionBlock(

elseBlock);
}

Blockly.BlocksToTextConverter.translate_logic_operation =
function(element){

var children = element.children;
var aBlock = children.namedItem ("A").firstElementChild;
var bBlock = children.namedItem ("B").firstElementChild;
var op = children.namedItem ("OP").innerHTML.toLowerCase

();

139

Blockly.BlocksToTextConverter.translateExpressionBlock(
aBlock);

Blockly.BlocksToTextConverter.tailText += ' ' + op + '
' ;

Blockly.BlocksToTextConverter.translateExpressionBlock(
bBlock);

}

Blockly.BlocksToTextConverter.translate_logic_negate =
function(element){

var children = element.children;
var child = children.namedItem ("BOOL");

Blockly.BlocksToTextConverter.tailText += "not";

Blockly.BlocksToTextConverter.translateExpressionBlock(
child);

}

Blockly.BlocksToTextConverter.translate_logic_compare =
function(element){

var children = element.children;
var aBlock = children.namedItem ("A").firstElementChild;
var bBlock = children.namedItem ("B").firstElementChild;
var op = children.namedItem ("OP").innerHTML;

if(op === "EQ"){
op = "equals ";

} else{
op = "not_equals ";

}

Blockly.BlocksToTextConverter.translateExpressionBlock(
aBlock);

Blockly.BlocksToTextConverter.tailText += ' ' + op + '
' ;

Blockly.BlocksToTextConverter.translateExpressionBlock(
bBlock);

}

140

Blockly.BlocksToTextConverter.translate_math_compare =
function(element){

var children = element.children;
var aBlock = children.namedItem ("A").firstElementChild;
var bBlock = children.namedItem ("B").firstElementChild;
var op = children.namedItem ("OP").innerHTML;

if(op === "EQ"){
op = '=';

} else if(op === "NEQ"){
op = '!=';

} else if(op === "LT"){
op = '<';

} else if(op === "GT"){
op = '>';

} else if(op === "LTE"){
op = '<=';

} else {
op = '>='

}

Blockly.BlocksToTextConverter.translateExpressionBlock(
aBlock);

Blockly.BlocksToTextConverter.tailText += ' ' + op + '
';

Blockly.BlocksToTextConverter.translateExpressionBlock(
bBlock);

}

Blockly.BlocksToTextConverter.translate_math_add =
function(element){

var children = element.children;

var mutationBlock;
for(var i=0; i<children.length; i++){

var child = children.item(i);
if(child.nodeName.toLowerCase () === "mutation "){

mutationBlock = child;
}

}

141

var numItems = (!! mutationBlock) ? parseInt(
mutationBlock.getAttribute ("items")) : 0;

var value = children.namedItem ("NUM0").
firstElementChild;

Blockly.BlocksToTextConverter.translateExpressionBlock(
value);

for (var i = 1; i<numItems; i++){
var value = children.namedItem ("NUM"+i).

firstElementChild;

Blockly.BlocksToTextConverter.tailText += ' + ';
Blockly.BlocksToTextConverter.

translateExpressionBlock(value);
}

}

Blockly.BlocksToTextConverter.translate_math_multiply =
function (element) {

var children = element.children;

var mutationBlock;
for(var i=0; i<children.length; i++){

var child = children.item(i);
if(child.nodeName.toLowerCase () === "mutation "){

mutationBlock = child;
}

}

var numItems = (!! mutationBlock) ? parseInt(
mutationBlock.getAttribute ("items")) : 0;

var value = children.namedItem ("NUM0").
firstElementChild;

Blockly.BlocksToTextConverter.translateExpressionBlock(
value);

for (var i = 1; i<numItems; i++){

142

var value = children.namedItem ("NUM"+i).
firstElementChild;

Blockly.BlocksToTextConverter.tailText += ' * ';
Blockly.BlocksToTextConverter.

translateExpressionBlock(value);
}

}

Blockly.BlocksToTextConverter.translate_math_subtract =
function (element) {

var children = element.children;
var aBlock = children.namedItem ("A").firstElementChild;
var bBlock = children.namedItem ("B").firstElementChild;

Blockly.BlocksToTextConverter.translateExpressionBlock(
aBlock);

Blockly.BlocksToTextConverter.tailText += ' - ';
Blockly.BlocksToTextConverter.translateExpressionBlock(

bBlock);
}

Blockly.BlocksToTextConverter.translate_math_division =
function (element) {

var children = element.children;
var aBlock = children.namedItem ("A").firstElementChild;
var bBlock = children.namedItem ("B").firstElementChild;

Blockly.BlocksToTextConverter.translateExpressionBlock(
aBlock);

Blockly.BlocksToTextConverter.tailText += ' / ';
Blockly.BlocksToTextConverter.translateExpressionBlock(

bBlock);
}

Blockly.BlocksToTextConverter.translate_math_power =
function (element) {

var children = element.children;
var aBlock = children.namedItem ("A").firstElementChild;
var bBlock = children.namedItem ("B").firstElementChild;

143

Blockly.BlocksToTextConverter.translateExpressionBlock(
aBlock);

Blockly.BlocksToTextConverter.tailText += ' ^ ';
Blockly.BlocksToTextConverter.translateExpressionBlock(

bBlock);
}

Blockly.BlocksToTextConverter.translate_math_divide =
function(element){

var children = element.children;
var dividend = children.namedItem (" DIVIDEND ").

firstElementChild;
var divisor = children.namedItem (" DIVISOR ").

firstElementChild;

var op = children.namedItem ("OP").innerHTML.toLowerCase
() + '_of ';

Blockly.BlocksToTextConverter.tailText += op + ' ';
Blockly.BlocksToTextConverter.translateExpressionBlock(

dividend);
Blockly.BlocksToTextConverter.tailText += ' / ';
Blockly.BlocksToTextConverter.translateExpressionBlock(

divisor);
}

Blockly.BlocksToTextConverter.translate_math_single =
function(element){

var children = element.children;
var expr = children.namedItem ("NUM").firstElementChild;

var op = children.namedItem ("OP").innerHTML.toLowerCase
();

if (op === "root") {
op = 'sqrt ';

} else if(op === "neg"){
op = '-';

} else if(op === "ln"){
op = 'log ';

144

} else if(op === "exp"){
op = 'e^';

} //no else case , op should remain the same for abs ,
round , ceiling , and floor

Blockly.BlocksToTextConverter.tailText += op + ' ';
Blockly.BlocksToTextConverter.translateExpressionBlock(

expr);
}

Blockly.BlocksToTextConverter.translate_math_abs =
function(element){

Blockly.BlocksToTextConverter.translate_math_single(
element);

}

Blockly.BlocksToTextConverter.translate_math_neg =
function(element){

Blockly.BlocksToTextConverter.translate_math_single(
element);

}

Blockly.BlocksToTextConverter.translate_math_round =
function(element){

Blockly.BlocksToTextConverter.translate_math_single(
element);

}

Blockly.BlocksToTextConverter.translate_math_ceiling =
function(element){

Blockly.BlocksToTextConverter.translate_math_single(
element);

}

Blockly.BlocksToTextConverter.translate_math_floor =
function(element){

Blockly.BlocksToTextConverter.translate_math_single(
element);

}

145

Blockly.BlocksToTextConverter.translate_math_trig =
function(element){

var children = element.children;
var expr = children.namedItem ("NUM").firstElementChild;

var op = children.namedItem ("OP").innerHTML.toLowerCase
();

Blockly.BlocksToTextConverter.tailText += op + ' ';
Blockly.BlocksToTextConverter.translateExpressionBlock(

expr);
}

Blockly.BlocksToTextConverter.translate_math_cos =
function(element){

Blockly.BlocksToTextConverter.translate_math_trig(
element);

}

Blockly.BlocksToTextConverter.translate_math_tan =
function(element){

Blockly.BlocksToTextConverter.translate_math_trig(
element);

}

Blockly.BlocksToTextConverter.
translate_local_declaration_expression = function(
element){

Blockly.BlocksToTextConverter.tailText += '
initialize_local ';

var children = element.children;

var mutationBlock;
for(var i=0; i<children.length; i++){

var child = children.item(i);
if(child.nodeName.toLowerCase () === "mutation "){

mutationBlock = child;
}

}

146

var numVars = (!! mutationBlock) ? mutationBlock.
childElementCount : 0;

for(var i=0; i<numVars; i++){
Blockly.BlocksToTextConverter.tailText += ' <';
var varName = children.namedItem ("VAR"+i).innerHTML;
var exprBlock = children.namedItem ("DECL"+i).

firstElementChild;
Blockly.BlocksToTextConverter.tailText += varName +

'> to: ';
Blockly.BlocksToTextConverter.

translateExpressionBlock(exprBlock);
}

Blockly.BlocksToTextConverter.tailText += ' in: ';
var returnExprBlock = children.namedItem (" RETURN ").

firstElementChild;
Blockly.BlocksToTextConverter.translateExpressionBlock(

returnExprBlock);
}

Blockly.BlocksToTextConverter.
translate_lexical_variable_get = function(element){

Blockly.BlocksToTextConverter.tailText += 'get ';
var title = element.firstElementChild;
Blockly.BlocksToTextConverter.tailText += title.

innerHTML;
}

Blockly.BlocksToTextConverter.translate_color_black =
function(element){

var hexValue = element.firstElementChild.innerHTML.
toLowerCase ();

if (hexValue === "#000000"){
Blockly.BlocksToTextConverter.tailText += 'color

black ';
} else{

Blockly.BlocksToTextConverter.tailText += 'color ' +
hexValue;

}

147

}

Blockly.BlocksToTextConverter.translate_color_blue =
function(element){

var hexValue = element.firstElementChild.innerHTML.
toLowerCase ();

if (hexValue === "#0000 ff"){
Blockly.BlocksToTextConverter.tailText += 'color blue

';
} else{

Blockly.BlocksToTextConverter.tailText += 'color ' +
hexValue;

}
}

Blockly.BlocksToTextConverter.translate_color_white =
function(element){

var hexValue = element.firstElementChild.innerHTML.
toLowerCase ();

if (hexValue === "# ffffff "){
Blockly.BlocksToTextConverter.tailText += 'color

white ';
} else{

Blockly.BlocksToTextConverter.tailText += 'color ' +
hexValue;

}
}

Blockly.BlocksToTextConverter.translate_color_magenta =
function(element){

var hexValue = element.firstElementChild.innerHTML.
toLowerCase ();

if (hexValue === "# ff00ff "){
Blockly.BlocksToTextConverter.tailText += 'color

magenta ';
} else{

Blockly.BlocksToTextConverter.tailText += 'color ' +
hexValue;

}
}

148

Blockly.BlocksToTextConverter.translate_color_red =
function(element){

var hexValue = element.firstElementChild.innerHTML.
toLowerCase ();

if (hexValue === "# ff0000 "){
Blockly.BlocksToTextConverter.tailText += 'color red

';
} else{

Blockly.BlocksToTextConverter.tailText += 'color ' +
hexValue;

}
}

Blockly.BlocksToTextConverter.translate_color_light_gray
= function(element){

var hexValue = element.firstElementChild.innerHTML.
toLowerCase ();

if (hexValue === "# cccccc "){
Blockly.BlocksToTextConverter.tailText += 'color

light_gray ';
} else{

Blockly.BlocksToTextConverter.tailText += 'color ' +
hexValue;

}
}

Blockly.BlocksToTextConverter.translate_color_pink =
function(element){

var hexValue = element.firstElementChild.innerHTML.
toLowerCase ();

if (hexValue === "# ffafaf "){
Blockly.BlocksToTextConverter.tailText += 'color pink

';
} else{

Blockly.BlocksToTextConverter.tailText += 'color ' +
hexValue;

}
}

149

Blockly.BlocksToTextConverter.translate_color_gray =
function(element){

var hexValue = element.firstElementChild.innerHTML.
toLowerCase ();

if (hexValue === "#888888"){
Blockly.BlocksToTextConverter.tailText += 'color gray

';
} else{

Blockly.BlocksToTextConverter.tailText += 'color ' +
hexValue;

}
}

Blockly.BlocksToTextConverter.translate_color_orange =
function(element){

var hexValue = element.firstElementChild.innerHTML.
toLowerCase ();

if (hexValue === "# ffc800 "){
Blockly.BlocksToTextConverter.tailText += 'color

orange ';
} else{

Blockly.BlocksToTextConverter.tailText += 'color ' +
hexValue;

}
}

Blockly.BlocksToTextConverter.translate_color_dark_gray =
function(element){

var hexValue = element.firstElementChild.innerHTML.
toLowerCase ();

if (hexValue === "#444444"){
Blockly.BlocksToTextConverter.tailText += 'color

dark_gray ';
} else{

Blockly.BlocksToTextConverter.tailText += 'color ' +
hexValue;

}
}

150

Blockly.BlocksToTextConverter.translate_color_yellow =
function(element){

var hexValue = element.firstElementChild.innerHTML.
toLowerCase ();

if (hexValue === "# ffff00 "){
Blockly.BlocksToTextConverter.tailText += 'color

yellow ';
} else{

Blockly.BlocksToTextConverter.tailText += 'color ' +
hexValue;

}
}

Blockly.BlocksToTextConverter.translate_color_green =
function(element){

var hexValue = element.firstElementChild.innerHTML.
toLowerCase ();

if (hexValue === "#00 ff00"){
Blockly.BlocksToTextConverter.tailText += 'color

green ';
} else{

Blockly.BlocksToTextConverter.tailText += 'color ' +
hexValue;

}
}

Blockly.BlocksToTextConverter.translate_color_cyan =
function(element){

var hexValue = element.firstElementChild.innerHTML.
toLowerCase ();

if (hexValue === "#00 ffff"){
Blockly.BlocksToTextConverter.tailText += 'color cyan

';
} else{

Blockly.BlocksToTextConverter.tailText += 'color ' +
hexValue;

}
}

151

Blockly.BlocksToTextConverter.translate_color_make_color
= function(element){

var children = element.children;
var expr = children.namedItem (" COLORLIST ").

firstElementChild;

Blockly.BlocksToTextConverter.tailText += 'make_color
';

Blockly.BlocksToTextConverter.translateExpressionBlock(
expr);

}

Blockly.BlocksToTextConverter.translate_lists_create_with
= function(element){

Blockly.BlocksToTextConverter.tailText += 'list ';
var children = element.children;
var mutation = parseInt(element.firstElementChild.

getAttribute ("items"));
for(var i=0; i<mutation; i++){

var valBlock = children.namedItem ("ADD" + i);
if(valBlock){

var block = valBlock.firstElementChild;
Blockly.BlocksToTextConverter.tailText += ' ';
Blockly.BlocksToTextConverter.

translateExpressionBlock(block);
}

}
}

Blockly.BlocksToTextConverter.translate_math_number =
function(element){

Blockly.BlocksToTextConverter.tailText += element.
firstElementChild.innerHTML;

}

Blockly.BlocksToTextConverter.translate_text = function(
element){

Blockly.BlocksToTextConverter.tailText += '"' + element
.firstElementChild.innerHTML + '"';

}

152

Blockly.BlocksToTextConverter.translate_logic_boolean =
function(element){

Blockly.BlocksToTextConverter.tailText += element.
firstElementChild.innerHTML.toLowerCase ();

}

Blockly.BlocksToTextConverter.translate_logic_false =
function(element){

Blockly.BlocksToTextConverter.translate_logic_boolean(
element);

}

Blockly.BlocksToTextConverter.
translate_code_write_tail_exp = function(element){

Blockly.BlocksToTextConverter.tailText += 'TAIL_exp ';

var child = element.firstElementChild;
var expression_text = child.innerHTML;

Blockly.BlocksToTextConverter.tailText += ' ' +
expression_text;

}

/**************** Statement Blocks ******************/

Blockly.BlocksToTextConverter.translateStatementBlock =
function(element){

var elementType = element.getAttribute ("type");
// expression block
Blockly.BlocksToTextConverter.tailText += '[';
Blockly.BlocksToTextConverter [" translate_" +

elementType].call(this , element);
Blockly.BlocksToTextConverter.tailText += ']';

}

Blockly.BlocksToTextConverter.translateStatementSequence
= function(element){

// var elementType = element.getAttribute ("type");

153

if(!! element){ //if element is not null (make sure it's
not the empty statement)

//var children = element.children;
var curBlock = element.firstElementChild; //this

should be the first statement block
Blockly.BlocksToTextConverter.translateStatementBlock(

curBlock);
var next_arr = Blockly.BlocksToTextConverter.

getImmediateChildrenByTagName(curBlock ,"next");
if(next_arr.length === 1){
Blockly.BlocksToTextConverter.
translateStatementSequence(next_arr [0]);

}
}

}
// Blockly.BlocksToTextConverter.

translate_controls_choose = function(element){
// var children = element.children;
// var ifBlock = children.namedItem ("TEST").

firstElementChild;
// var thenBlock = children.namedItem (" THENRETURN ").

firstElementChild;
// var elseBlock = children.namedItem (" ELSERETURN ").

firstElementChild;

// Blockly.BlocksToTextConverter.tailText += 'if ';
// Blockly.BlocksToTextConverter.

translateExpressionBlock(ifBlock);
// Blockly.BlocksToTextConverter.tailText += ' then: ';
// Blockly.BlocksToTextConverter.

translateExpressionBlock(thenBlock);
// Blockly.BlocksToTextConverter.tailText += ' else: ';
// Blockly.BlocksToTextConverter.

translateExpressionBlock(elseBlock);
// }

Blockly.BlocksToTextConverter.translate_controls_if =
function(element){

var children = element.children;

154

var mutations = Blockly.BlocksToTextConverter.
getImmediateChildrenByTagName(element ," mutation ");

var ifBlock = children.namedItem ("IF0").
firstElementChild;

var thenSuite = children.namedItem ("DO0");

Blockly.BlocksToTextConverter.tailText += 'if ';
Blockly.BlocksToTextConverter.translateExpressionBlock(

ifBlock);
Blockly.BlocksToTextConverter.tailText += ' then: ';
Blockly.BlocksToTextConverter.

translateStatementSequence(thenSuite);

//if this block is in a seq of statements which have
mutation sub -elements ,

//then mutations.length will be > 1 ------ ignore this
comment , bug fixed by Karishma 03.21.14

if (mutations.length === 1){
var elseIfCount = parseInt(mutations [0]. getAttribute

(" elseif "));
var elseCount = parseInt(mutations [0]. getAttribute ("

else"));
for(var i=1; i<= elseIfCount; i++){

var elseIfBlock = children.namedItem ("IF"+i).
firstElementChild;

var thenBlocks = children.namedItem ("DO"+i);

Blockly.BlocksToTextConverter.tailText += ' else_if
: ';

Blockly.BlocksToTextConverter.
translateExpressionBlock(elseIfBlock);

Blockly.BlocksToTextConverter.tailText += ' then:
';

Blockly.BlocksToTextConverter.
translateStatementSequence(thenBlocks);

}

for(var i=1; i<= elseCount; i++){
var elseBlocks = children.namedItem ("ELSE");

155

Blockly.BlocksToTextConverter.tailText += ' else:
';

Blockly.BlocksToTextConverter.
translateStatementSequence(elseBlocks);

}
} else{

console.log(" Blocks To Text Converter -
translate_controls_if: something is wrong with
mutations ");

}
}

Blockly.BlocksToTextConverter.
translate_lexical_variable_set = function(element){

var children = element.children;
var varName = children.namedItem ("VAR").innerHTML;
var value = children.namedItem (" VALUE").

firstElementChild;

Blockly.BlocksToTextConverter.tailText += 'set ' +
varName + ' to: ';

Blockly.BlocksToTextConverter.translateExpressionBlock(
value);

}

Blockly.BlocksToTextConverter.
translate_code_write_tail_stmt = function(element){

Blockly.BlocksToTextConverter.tailText += 'TAIL_stmt ';

var child = element.firstElementChild;
var stmt_text = child.innerHTML;

Blockly.BlocksToTextConverter.tailText += ' ' +
stmt_text;

}

/************ Top Level Blocks ******************/

156

Blockly.BlocksToTextConverter.translateTopLevelBlock =
function(element){

var elementType = element.getAttribute ("type");
// expression block
Blockly.BlocksToTextConverter.tailText += '(';
Blockly.BlocksToTextConverter [" translate_" +

elementType].call(this , element);
Blockly.BlocksToTextConverter.tailText += ') ';

}

Blockly.BlocksToTextConverter.
translate_global_declaration = function(element){

var children = element.children;
var varName = children.namedItem ("NAME").innerHTML;
var value = children.namedItem (" VALUE").

firstElementChild;

Blockly.BlocksToTextConverter.tailText += '
initialize_global <' + varName + '> to: ';

Blockly.BlocksToTextConverter.translateExpressionBlock(
value);

}

Blockly.BlocksToTextConverter.
translate_procedures_defnoreturn = function(element){

var children = element.children;
var procName = children.namedItem ("NAME").innerHTML;

Blockly.BlocksToTextConverter.tailText += 'to <' +
procName + '> ';

var numParams = 0;
var mutations = Blockly.BlocksToTextConverter.

getImmediateChildrenByTagName(element ," mutation ");
if(mutations.length === 1){

numParams = mutations [0]. childElementCount;
}else{

console.log(" Blocks To Text Converter -
translate_procedures_defnoreturn: something is

157

wrong with mutations ");
}

for(var i=0; i<numParams; i++){
var argName = children.namedItem ("VAR"+i).innerHTML;
Blockly.BlocksToTextConverter.tailText += '<' +

argName + '> ';
}

var suite = children.namedItem (" STACK");
Blockly.BlocksToTextConverter.tailText += 'do: ';
Blockly.BlocksToTextConverter.

translateStatementSequence(suite);
}

Blockly.BlocksToTextConverter.
translate_procedures_defreturn = function(element){

var children = element.children;
var procName = children.namedItem ("NAME").innerHTML;

Blockly.BlocksToTextConverter.tailText += 'to <' +
procName + '> ';

var numParams = 0;
var mutations = Blockly.BlocksToTextConverter.

getImmediateChildrenByTagName(element ," mutation ");
if(mutations.length === 1){

numParams = mutations [0]. childElementCount;
}else{

console.log(" Blocks To Text Converter -
translate_procedures_defnoreturn: something is
wrong with mutations ");

}

for(var i=0; i<numParams; i++){
var argName = children.namedItem ("VAR"+i).innerHTML;
Blockly.BlocksToTextConverter.tailText += '<' +

argName + '> ';
}

158

var retVal = children.namedItem (" RETURN ").
firstElementChild;

Blockly.BlocksToTextConverter.tailText += 'result: ';
Blockly.BlocksToTextConverter.translateExpressionBlock(

retVal);
}

Blockly.BlocksToTextConverter.translate_component_event =
function(element){

var children = element.children;
var componentName = children.namedItem ("

COMPONENT_SELECTOR ").innerHTML;
var mutations = Blockly.BlocksToTextConverter.

getImmediateChildrenByTagName(element ," mutation ");
if(mutations.length !== 1){

console.log(" BlocksToTextCovereter -
translate_component_event: Something is wrong with
this block .")

}
var eventName = mutations [0]. getAttribute (" event_name ")

;

Blockly.BlocksToTextConverter.tailText += 'when ' +
componentName + '.' + eventName + ' do: ';

var suite = children.namedItem ("DO");

Blockly.BlocksToTextConverter.
translateStatementSequence(suite);

}

//Hacky fix later!!
Blockly.BlocksToTextConverter.translate_component_set_get

= function(element){
var children = element.children;
var componentName = children.namedItem ("

COMPONENT_SELECTOR ").innerHTML;
var propName = children.namedItem ("PROP").innerHTML;

159

var mutations = Blockly.BlocksToTextConverter.
getImmediateChildrenByTagName(element ," mutation ");

if(mutations.length !== 1){
console.log(" BlocksToTextCovereter -

translate_component_event: Something is wrong with
this block .")

}
var setGet = mutations [0]. getAttribute (" set_or_get ");

if(setGet === "set"){
var valBlock = children.namedItem ("VALUE").

firstElementChild;
Blockly.BlocksToTextConverter.tailText += 'set ' +

componentName + '.' + propName + ' to: ';
Blockly.BlocksToTextConverter.

translateExpressionBlock(valBlock);
} else{

Blockly.BlocksToTextConverter.tailText +=
componentName + '.' + propName;

}
}

160

