
Improving the Usability of App Inventor through Conversion Between Blocks and Text
Karishma Chadha ‘14
Franklyn Turbak, Advisor

Wellesley College Computer Science Department

Problem

MIT App Inventor 2 (AI2), a popular online
environment for Android app development,
democratizes programming through its easy-to-use
blocks language. While simple blocks
programs are easy to read and write, complex ones
become overwhelming. Creating and navigating
nontrivial blocks programs is tedious, and AI2’s
current inability to copy blocks between projects
inhibits sharing.

My Solution
TAIL (Textual App Inventor Language)

To address these issues, I have created a new
textual language, TAIL, that is isomorphic to
AI2’s blocks language and provided a means for
converting between them. This project aims to
(1) increase AI2’s usability by providing an
e�cient means for reading, constructing, and
sharing programs, and (2) ease users’ transitions
from blocks programming to text programming.

TAIL Language Design

Blocks <—> Text ConversionConversion between Blocks and TAIL: The Details

TAIL to Blocks

Tree Translation

Lexer
{{{12} + {3}} * {4}}

{ 12{{ 4 }} }}} {{+ 3 *

ANTLR Lexer Grammar Rules

Parser

{ 12{{ 4 }} }}} {{+ 3 *

ANTLR Parser Grammar Rules

ANTLR Parser Actions
in Javascript Target

<block type="math_multiply" inline="true">
 <mutation items="2"></mutation>
 <value name="NUM0">
 <block type="math_add" inline="true">
 <mutation items="2"></mutation>
 <value name="NUM0">
 <block type="math_number">
 <title name="NUM">12</title>
 </block>
 </value>
 <value name="NUM1">
 <block type="math_number">
 <title name="NUM">3</title>
 </block>
 </value>
 </block>
 </value>
 <value name="NUM1">
 <block type="math_number">
 <title name="NUM">4</title>
 </block>
 </value>
</block>

Blocks to TAIL

XML Tree

JavaScript Blocks to Text Converter

TAIL Code Blocks
(in JavaScript)

<block type="math_multiply" inline="true">
 <mutation items="2"></mutation>
 <value name="NUM0">
 <block type="math_add" inline="true">
 <mutation items="2"></mutation>
 <value name="NUM0">
 <block type="math_number">
 <title name="NUM">12</title>
 </block>
 </value>
 <value name="NUM1">
 <block type="math_number">
 <title name="NUM">3</title>
 </block>
 </value>
 </block>
 </value>
 <value name="NUM1">
 <block type="math_number">
 <title name="NUM">4</title>
 </block>
 </value>
</block>

XML Tree

(initialize_global <num> to: {42})

(when Button1.Click
 do: [initialize_local <avg>
 to: {call average
 x: {TextBox1.Text}
 y: {get global num}}
 in: [if {{get avg} < {get global num}}
 then: [set global num to: {{get avg} \ {2}}]
 else: [set TextBox1.Text to: {get avg}]]])

(to <average> <x> <y>
 result: {{{get x} + {get y}}/{2}})

Error Detection

AI2 Blocks Editor

