
Improving App Inventor Debugging Support
Johanna Okerlund, Wellesley College
Advisor: Franklyn Turbak

 Project Goals

 App Inventor Background
An App Inventor app is specified by a project consisting of a set of user
interface components and a program that describes the behavior of
these components. The program is created by connecting blocks
resembling jigsaw puzzle pieces. Blocks languages like App Inventor
and Scratch lower barriers for novices by eliminating or reducing many
common programming errors and by providing visual guidance for
choosing, assembling, and understanding program structures.

Sample App Inventor blocks program

MIT App Inventor is a visual programming environment for creating apps
for Android mobile devices. My project is to design and implement
improved debugging support for App Inventor. With my changes, (1) error
messages are now displayed on the block that is causing the error. I am
also (2) designing and implementing a “watch” feature that allows users to
track how the value of expressions change over time and (3) setting up
the means to collect more data on runtime errors to better understand
what additional support users might need.

Funded	 by	 Brachman	 Hoffman	 Fund	 Faculty	 Small	 Grants	 Summer	 Research	 Awards	 and	 Na;onal	
Science	 Founda;on	 Grant	 DUE-‐1226216.	 Any	 opinions,	 findings,	 and	 conclusions	 or	
recommenda;ons	 expressed	 in	 this	 material	 are	 those	 of	 the	 author(s)	 and	 do	 not	 necessarily	 reflect	
the	 views	 of	 the	 Na;onal	 Science	 Founda;on.	

	 	

 Live Development Mode

Previous work that included the analysis of the collected error reports
shows that many users get errors and many of these people get the same
or similar error messages repeatedly. This work lead to the conclusion that
debugging support is needed and prompted my current work.

When a runtime
error occurs on the
phone, the error
message is sent to
a CouchDB
database

While programming, the user is in live development
mode, where communication between the blocks
program in the browser and the device is constant.
The blocks editor converts the changed blocks to
executable code to the phone and sends it over. The
phone runs the new code and sends back status
updates and responses to requests.

 Errors on Blocks Data Collection

Although blocks eliminate many syntactic errors, runtime errors are still possible,
such as type errors and index-out-of-bounds errors. Previously, when a program
generated a runtime error, the message would appear on the device and in a
dismissible dialogue box in the browser. However, this does not help users find the
source of the error and doesn’t allow them to look at the error and the code at the
same time.

My solution is to display the error message to the block causing the error. Now
the user knows exactly where the error is coming from and can refer back to
the error message as they try to fix it.

Multiple errors can also be viewed at the same time. When a block that
previously generated an error executes without error, the message is removed
from the block.

 Watch
 Future Work

When a user puts a “watch” on a block, every time that block is evaluated,
the result is sent to the block and displayed sequentially. Users can watch
any expression, including variable references and procedure calls that
return values.

Currently, recorded error reports include only the error message, the time
of the error, and the device generating it. I have been designing the means
to trace the errors back to the projects generating them. My design is to
store a snapshot of the program at the time of the error in the cloud and
send the user name and project ID with the error report to link back to the
project. Other work is being done to store the snapshot of the program,
but I have been working to store the username and project ID.

 Implementation: Augmented Code
All of my work has been possible because of my implementation of
augmented code. Blocks are converted to YAIL (Young Android
Intermediate Language) and sent to the device, where a Kawa interpreter
runs the program. The previous mechanism for converting blocks to YAIL
did not include any information about block identities, so there was no way
to associate errors with particular blocks. While the code was evaluated,
the device and blocks editor didn’t know which block was being executed.

(define-‐event	 BuOon1	 Click	 	
	 	 	 	 (set-‐and-‐coerce-‐property!	 'BuOon1	 'Text	 	 	 	 	
	 	 	 	 	 	 	 	 (call-‐yail-‐primi;ve	 +	 (*list-‐for-‐run;me*	 12	 7)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 '(number	 number)	 "+")	 	
	 	 	 	 	 	 	 	 'text))	

6	 17	 13	 27	 32	 (augment	 6	 	
	 	 (define-‐event	 BuOon1	 Click	 	
	 	 	 	 	 (augment	 17	 	
	 	 	 	 	 	 	 	 (set-‐and-‐coerce-‐property!	 'BuOon1	 'Text	 	
	 	 	 	 	 	 	 	 	 	 	 (augment	 13	 (call-‐yail-‐primi;ve	 +	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (*list-‐for-‐run;me*	 (augment	 27	 12)	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (augment	 32	 7))	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 '(number	 number)	 "+"))	
	 	 	 	 	 	 	 	 	 	 	 'text)))	

Blocks in an App Inventor have a unique ID within that program. With my
implementation, when the blocks are converted to YAIL, the code is
wrapped in a tag that has the word “augment” and the block ID. When the
device executes that code, it stores the block id as it executes the code
from that block.

•  The data collected from more detailed error reports could lead to the
development of an intelligent tutor that responds when a user
encounters a runtime error with suggestions of how to fix it based on
what other users did when encountering a similar error.

•  A more dynamic watch could be implemented where the value of all
expressions are recorded during runtime and then the user has the
ability to go back and forth in time to see how the state of the program
changed and what was being executed at that point.

