
A Preliminary Analysis of
App Inventor Blocks Programs

Johanna Okerlund and Franklyn Turbak
Computer Science Department, Wellesley College

Wellesley, Massachusetts, USA
Email:{johanna.okerlund, franklyn.turbak}@wellesley.edu

Abstract—App Inventor is a popular blocks programming
environment for creating mobile apps for Android phones. In our
ongoing project, we are analyzing App Inventor blocks programs
to understand their effectiveness for creating apps and learning
programming. Our ultimate goals are to give feedback to users
about their programs and give guidance to the developers of App
Inventor for improving its usability.

I. INTRODUCTION

MIT App Inventor [1] is a visual environment for creating
apps for Android mobile devices. Each app is specified by a
project consisting of a set of user interface components and a
program that describes the behavior of these components. The
program is created by connecting blocks resembling jigsaw
puzzle pieces. Blocks languages lower barriers for novices by
eliminating or reducing many common programming errors
and by providing visual guidance for choosing, assembling,
and understanding program structures.

There are currently about 880,000 App Inventor users who
have created nearly 2 million apps. App Inventor is used by
students in many introductory computer science classes as well
as by people with varying degrees of programming experience
who want to create apps for themselves or for others. Little
is known about how App Inventor programmers use blocks
in their programs. The goal of this project is to study blocks
usage in App Inventor programs in order to gain insight into
the effectiveness of this visual language for creating apps and
learning programming concepts.

II. PRELIMINARY DATA COLLECTION AND ANALYSIS

Thus far we have collected and visualized data to under-
stand simple aspects of App Inventor projects. App Inventor
programs are stored in the cloud. We have access to the
subset of these projects that have been updated since August
2012 and are stored in a backup repository. From these, we
have extracted key features from the 270,000 App Inventor
projects created by 40,000 randomly chosen users. Features
of interest include counts of components, blocks, procedures
declared, calls to each procedure, arguments per procedure,
global variables, and projects per user. We are analyzing the
results to understand how App Inventor is used in practice.

For example, a histogram of the number of blocks used in
App Inventor programs (Fig. 1) shows that a surprisingly large
percentage (31%) of programs have no blocks. This suggests
that a significant number of users had trouble opening or using

Fig. 1. Histogram of blocks per project

Fig. 2. Number of blocks in popular tutorials

the blocks editor. Another large percentage (13%) of programs
have between 1 and 4 blocks, with which only a very simple
program (such as the standard “Hello Purr” first program) can
be written. Fig. 2 shows the frequency of the number of blocks
in some popular tutorials [2] to give a sense of how many
blocks are necessary to write an app with basic functionality.

As a second example, in a count of calls to each procedure
(Fig. 3), 6% of procedures are declared but never called.
Perhaps users creating these procedures don’t know how to use
them. On the other hand, App Inventor programs often include
block assemblies that aren’t currently used but might be useful
later, and these might include uncalled procedures. Even more
interesting is that the most common number of times to call a
procedure is one. Rather than declaring a procedure to avoid
repeating code, App Inventor programmers seem to be using
procedures as way of organizing blocks on the screen. We



Fig. 3. Frequency of procedure calls

Fig. 4. Clusters resulting from k-means clustering on average number of
components and blocks.

are also interested in these numbers because they suggest the
complexity of the program and the proficiency of the user.

We have used simple statistics to cluster the users into
groups whose members use App Inventor in similar ways. We
used a k-means clustering algorithm with k=6 to cluster 10,000
randomly chosen users based on the average number of blocks
and average number of components per project (Fig. 4). We
can use these clusters to interpret the extent to which any given
user has used App Inventor. Cluster C3 represents the people
all of whose projects have zero components and zero blocks.
C1 is the group of people all of whose projects have zero
blocks, but some of which have at least one component. C6
represents people all of whose projects have zero components,
but some of which have at least one block. These people don’t
have working programs. Clusters C2, C4, and C5 are groups
of people some of whose projects have nonzero blocks and
components.

III. FUTURE WORK

We are currently collecting more blocks usage statistics for
a larger sample of App Inventor users. The summer of 2013
marks the release of App Inventor 2, a version of App Inventor
in which the blocks editor is directly integrated into the web
browser (as opposed to being a separate Java application). We
are eager to see whether blocks usage statistics from App
Inventor 2 indicate that the newer blocks editor is easier to
use. App Inventor 2 also handles variables differently, and we
can see if statistics involving global variables and procedure

parameters differ between the versions.
Our next step (during the summer of 2013) is to develop

simple notions of program sophistication in order (1) to
determine the extent to which App Inventor users are learning
programming concepts (do they write more sophisticated pro-
grams over time?) and (2) to provide feedback to users about
their programs. For example, a program with multiple calls to a
procedure is more sophisticated than a program with repeated
copies of the code that would be in the procedure body.
This notion can be used as the basis for an automatic tutor
that suggests opportunities for proceduralization. Currently, we
have only coarse-grained (roughly weekly) snapshots of user
projects, which is not very helpful for tracking the evolution
of a single program. But we can tell if later programs of users
are more sophisticated than earlier ones.

A longer range goal is to instrument App Inventor to record
the fine-grained steps of program construction. This wealth of
information will give a more detailed narrative of how users
write their programs. We expect that the high level nature
of blocks programming edits will be more manageable and
informative than the low-level nature of keystroke edits used
in learning analytics systems for programming, such as [3]. We
also plan to formulate a way to correlate program construction
steps with compile time and runtime errors. This will help us
understand how students build, debug, and test projects as they
are learning to code and how best to improve their learning
and the instruction by their teachers.

IV. WHY IS THIS RESEARCH OF INTEREST TO VL/HCC?

This research is of interest to the VL/HCC community be-
cause App Inventor is becoming an increasingly popular visual
language for creating mobile apps and teaching programming.
Our work is the first attempt to analyze a large percentage of
all App Inventor programs and contributes to understanding
the effectiveness of blocks languages for learning program-
ming skills and computational thinking concepts.

V. NATURE OF THIS SHOWPIECE

Our showpiece will consist of a poster that summarizes the
key results from our ongoing data collection and analysis of
blocks usage in App Inventor programs. If sufficient data are
available about App Inventor 2, we will include a preliminary
comparison of the two versions of App Inventor.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant Number DUE-1226216. It
was also supported by a Wellesley College Brachman Hoffman
Fund Faculty Small Grants Summer Research Awards.

REFERENCES

[1] MIT App Inventor home page, MIT Center for Mobile Learning, http:
//appinventor.mit.edu, accessed Jun. 7, 2013.

[2] MIT App Inventor tutorials page, MIT Center for Mobile Learning, http:
//appinventor.mit.edu/explore/tutorials.html, accessed Jun. 7, 2013.

[3] C. Piech, M. Sahami, D. Koller, S. Cooper, and P. Blikstein, “Modeling
how students learn to program,” in 43rd ACM technical symposium on
Computer Science Education (SIGCSE’12), 2012, pp. 153–160.


