
The Design of Naming Features in App Inventor 2

Franklyn Turbak
Computer Science Department

Wellesley College
Wellesley, Massachusetts, USA
Email: fturbak@wellesley.edu

David Wolber
Computer Science Department

University of San Francisco
San Francisco, California, USA

Email: wolber@usfca.edu

Paul Medlock-Walton
Scheller Teacher Education Program

Massachusetts Institute of Technology
Cambridge, Massachusetts, USA

Email: paulmw@mit.edu

Abstract—Blocks languages, in which programs are con-
structed by connecting blocks resembling puzzle pieces, are
increasingly used to introduce novices to programming. MIT App
Inventor 2 has a blocks language for specifying the behavior of
mobile apps. Its naming features (involving event and procedure
parameters, global and local variables, and names for procedures,
components, and component properties) were designed to address
problems with names in other blocks languages, including its
predecessor, MIT App Inventor Classic. We discuss the design
of these features, and evaluate them with respect to cognitive
dimensions and fundamental computer science naming concepts.

I. INTRODUCTION

Blocks programming languages, in which coding is done
by connecting drag-and-drop fragments shaped like puzzle
pieces, are increasingly used in introductory programming
environments. Over 15 million people have solved maze chal-
lenges in Blockly [1] as part of code.org’s Hour of Code [2].
Millions more have used Scratch ([3], [4]) to create animations
and games, MIT App Inventor [5] to build Android apps, and
StarLogo [6] to experiment with multi-agent simulations.

Since 2009, we have taught and informally observed hun-
dreds of App Inventor users (including both students and
teachers from college, high school, and middle school) in the
context of workshops, extracurricular activities, full-semester
college courses, and online user forums. We observed that
users of App Inventor Classic (AI1) had numerous difficulties
with naming features, such as declaring and referencing global
variables and parameters for events and procedures. We have
designed and implemented improved naming features for App
Inventor 2 (AI2) that are applicable to blocks languages
in general. These features help blocks programmers declare
variables and use them in the right scope, and also help them
edit blocks code involving variables and other named entities,
such as procedures, components, and component properties.

In this paper, we use the cognitive dimensions framework
([7], [8]) to present and evaluate the naming features of
AI2. Our contribution is the design of naming features for
blocks languages that respect fundamental naming concepts
in computer science and mathematics (e.g., declaration vs.
reference, scoping, consistent renaming) and address problems
with naming in other blocks languages.

II. MIT APP INVENTOR

MIT App Inventor is a blocks-based environment for creat-
ing Android mobile apps. An App Inventor project consists of
a set of components and a program specifying their behavior.

Components include visible user interface items (e.g., buttons,
images, and text boxes) and non-visible items used in the app
(e.g., camera, speech recognizer, GPS sensor). The program
is written in a blocks language. For example, the AI2 blocks
shown in Fig. 1 specify that a small circular dot should be
drawn in Canvas1 wherever it is touched, and that a horizontal
sequence of dots growing in diameter (vaguely resembling a
comet) should be drawn in Canvas2 wherever it is touched.

In AI1, released in 2009, the blocks editor runs as a Java
Web Start application. In AI2, released in Dec., 2013, the
blocks editor runs in a web browser as a JavaScript program
based on the Blockly blocks framework [1]. AI1 users with
1.4 million unique email addresses have made over 3.5 million
projects, and AI2 users with nearly 0.5 million unique email
addresses have made over 1.1 million projects.

III. COGNITIVE DIMENSIONS EVALUATION

Cognitive dimensions of notations [7] is a framework for
evaluating notational systems like programming languages.
Here we use the most relevant of the dimensions enumerated
by Green and Petre for visual programming languages [8] to
present the naming features of AI2 and compare them to those
of other blocks languages, particularly AI1.

We were unaware of cognitive dimensions when we started
this work, so it did not guide our designs. However, it is useful
for explaining and evaluating the key aspects of our design, and
it suggests how we can further improve AI2 naming features.

Fig. 1. Sample AI2 blocks program.

Error-proneness: This dimension measures how a notation
leads users to make mistakes. This is the most important
dimension for blocks languages, whose primary purpose is
to reduce syntactic errors in text-based programming. Block
shapes guarantee that blocks can be connected only in syn-
tactically meaningful ways. The plug on the left of an AI2
expression block, which indicates it produces a value, only
fits into sockets that consume values. Statements (with upper-
left notches and lower-left nubs) compose in vertical sequences
that fit into statement contexts, like those labeled do in Fig. 1.
Labels on sockets help programmers remember the number
and order of operands. Blocks are selected from drawers —
menus of related blocks (e.g., math blocks, control blocks) —
so it is not necessary to remember or type their names. Block
nesting elucidates the tree-shaped structure of programs.

Naming operations include (1) declaring names (glob-
al/local variables, event/procedure parameters), (2) referencing
declared names (to get/set their values) and (3) consistently
renaming a declaration and all its references. Here we show
how these are done in AI2 and argue that they reduce error-
proneness relative to other blocks languages.

The main naming error is an unbound variable, which can
come from forgetting to declare a variable, using a variable
outside its scope of declaration, or misspelling a variable’s
name. Text languages provide little protection against unbound
variables, but report them at compile time or run time. Modern
integrated development environments like Eclipse use color-
coding and/or icons to flag unbound variables. Blocks lan-
guages offer additional features to prevent or highlight them.

There are five key aspects to handling names in AI2
that help to reduce errors. First, all AI2 variable declara-
tions (whether for event/procedure parameters, global/local
variables, or loop indices) are represented as non-block en-
tities: salmon-colored text boxes with rounded corners. E.g.,
Fig. 1 has event parameters x and y, procedure parameters
xComet and y, loop index i, and global variable dots.
Event handler and loop blocks have built-in name declarations.
Procedure parameters are declared using Blockly’s mutator
mechanism, illustrated in Fig. 2. In contrast, AI1 parameter
declarations are expressed with name declaration blocks that
plug into parameter declaration sockets (Fig. 3). AI1’s use of
the same plug-and-socket metaphor for parameter declarations
as for connecting value-producing expression plugs to value-
consuming sockets is inherently confusing, since these two
distinct classes of blocks can’t be connected even though their
shapes suggest they can. AI2 fixes this problem by making the
visual representation of name declarations unrelated to plugs
and sockets.

Fig. 2. Procedure parameters are added, removed, and reordered using a mini
blocks editor called a mutator.

(a) (b)

Fig. 3. Event and procedure parameter declarations in AI1. Procedures always
have one last empty extensible socket for adding another parameter.

Another problem with AI1 name blocks is that they can ac-
cidentally be unplugged. E.g., unplugging name xTouch in
Canvas1.TouchDown in Fig. 3a leads to the cryptic runtime
error message call to ’Canvas1$TouchDown’ has
too many arguments (2; must be 1). This kind of
error is surprisingly common. A study of 2300 AI1 users who
generated runtime errors over a 3-week period found that over
a quarter of the users experienced this kind of error [9]. AI2
eliminates these errors by getting rid of declaration blocks.

Second, all variable references in AI2 use drop-down
menus that list only names that are valid in the current
scope. AI2 uses variable getter/setter blocks with drop-down
menus pioneered in TurtleBlocks/PictureBlocks [10]. Rather
than taking the AI1 approach of listing value blocks (i.e.,
variable reference blocks) for all variables declared in the
program in a My Definitions drawer, AI2 provides single

generic and blocks in its Variables
drawer. As in TurtleBlocks/PictureBlocks, these blocks have
a drop-down menu of names that initially displays no choice.
When these blocks are dragged into the main workspace and
connected to other blocks, the drop-down menu contains a
list of only the names that are in scope at that point. For
example, Fig. 4a shows the menu for the get y block in
Canvas2.TouchDown in Fig. 1 and Fig. 4b shows the menu
for the get y block in the comet procedure. The drop-down
menu for a set block is exactly the same as the menu for a get
block in the same context. Although the Blockly language has
variable getter/setter blocks with drop-down menus, they list
all variables and parameters in the entire program, just like the
AI1 My Definitions drawer. This helps to prevent misspellings
when names are manually typed, but does not help prevent
out-of-scope variables.

(a) (b)

Fig. 4. Examples of get block drop-down menus listing in-scope variables.
Third, AI2 introduces a novel feature in which hovering

with the mouse over a variable declaration displays a flyout
menu with a get and set block instantiated for that variable
(Fig. 5). One of these blocks can be selected from the flyout
and dragged to the desired point of use. Once the getter/setter
block is placed in context, the drop-down menu works as
before and can be used to change the referenced variable.
This addresses empirical problems with dragging getter/setter
blocks from the Variables drawer: (1) novices often don’t know
to look there for these blocks and (2) the fact that the names in
the blocks are blank until they are plugged into context does

Fig. 5. Hovering over an AI2 variable declaration creates a flyout menu with
get and get blocks for that variable.

not highlight their purpose. Informal observations suggest that
selecting getters/setters from the flyout is much more popular
than selecting them from the Variables drawer.

Fourth, another novel AI2 feature is that unbound variable
reference blocks are flagged with a red error triangle. E.g.,
dragging a get x block from Fig. 1 into a scope where x

is not declared makes it look like . In contrast,
Blockly, Scratch 2.0, and StarLogo TNG do not indicate when
variable reference blocks are used outside their declared scope.

Fifth, changing the name of an AI2 variable declaration
consistently renames all associated variable references in a way
that prevents accidental name capture. E.g., in Fig. 1, changing
the loop index variable i to x will automatically rename both
get i blocks to get x. An attempt to rename i to y would
accidentally capture the procedure parameter reference get
y in Canvas2.DrawCircle, so this is not allowed; the
automatically generated alternative y2 is used instead. Blockly
and Scratch 2.0 do not rename reference blocks when their
declaration name is changed, which increases the likelihood
of unbound variables. AI1 does consistently rename references
when the declaration name is changed, but requires new names
to be different than any other name used in the program.
AI1’s name uniqueness requirement violates a fundamental
principle in computer science and mathematics that the choice
of local names in constructs should be independent. E.g.,
using the local name x in the formula

∑100
x=1 x should not

preclude its use in some other formula; the scope of this
particular occurrence of x is limited to the summation formula.
AI2 provides the consistent renaming benefits of AI1 while
respecting the CS principle of name locality.

Viscosity: This dimension measures how difficult it is to
change a program. We have already discussed consistently
changing the name of a declaration and all its references. Here
we focus on other minor edits to code involving names.

Blocks programmers often want to change names in a block
assembly. Suppose that the definition of an AI hypotenuse
procedure involves creating the blocks in Fig. 6a. A subsequent
step is to create the blocks in Fig. 6b. One way to do this is to
drag a multiply block and two value y blocks from drawers
and assemble them. Another way is to copy the assembly in
Fig. 6a (both AI1 and AI2 allow copying/pasting arbitrary
assemblies), remove the value x blocks, drag a value y
block from the definitions drawer, copy it, and insert the two
copies of value y into the copied multiply block. In either
approach, many steps are required to achieve a simple goal.

(a) (b)

Fig. 6. Two block assemblies from an AI1 hypotenuse procedure.

This task is easier in AI2. Starting with the assembly in
Fig. 7a, the x-squared subassembly can be copied and placed
in the second operand of the addition block (Fig. 7b). Then
the getter blocks’ drop-down menus can be used to change
the two references of x to y (Fig. 7c). Such in-place edits
made by choosing a different selection from a drop-down menu
simplify block editing by avoiding the need to decompose
blocks, make small changes, and reconnect them. AI2 also has
drop-down menus on component blocks (Fig. 8) and procedure
call blocks that reduce viscosity by permitting in-place editing
In contrast, AI1 component and procedure call blocks have
hardwired names. Changing these in a larger assembly requires
the more cumbersome process of replacing the blocks by new
blocks selected from drawers.

(a) Component event handler. (b) Component method call.

(c) Component property getter
(component name drop down)

(d) Component property getter (prop-
erty name drop down)

Fig. 8. Drop-down menus in various AI2 component blocks.

Finally, editing AI2 block assemblies with variable refer-
ences is aided by the fact that an unbound reference block
remembers its original name, even though this name is not in
the drop-down menu. When such a block is reinserted into
the correct scope, the name stays the same, but the error
triangle disappears (see Fig. 9). This is an improvement over
TurtleBlocks/PictureBlocks, in which a disconnected getter’s
name is replaced with the special symbol ???, and the old
name must be reselected from the drop-down when the getter
block is reconnected to the original scope.

(a) (b)

(c) (d)

Fig. 9. Steps to change p from an identity to a square-root procedure.

Premature Commitment: This dimension measures ways in
which the system requires doing things in a particular order.
Like all blocks languages we know, AI1 and AI2 require
that all named entities (variables, procedures, components)
be declared before blocks that mention these names can
be manipulated. This requirement interferes with tasks like
assembling blocks for mathematical formulas, which cannot
be done until the names mentioned by the formulas have been

(a) (b) (c)

Fig. 7. Completing an AI2 hypotenuse procedure via copying and in-place edits.

declared. In contrast, the free-form nature of textual languages
allows writing formulas referencing variables before wrapping
them in a context that declares those variables.

Diffuseness: This dimension measures the space taken by
notations. Blocks are typically much bigger than their textual
counterparts, so less of the program can be viewed at once.
AI2 getter/setter blocks have sizes similar to corresponding
AI1 blocks except for global variable getters, where AI2 uses
two words (get global) in place of the one word (global)
in AI1. Parameter declarations in AI2 are much more concise,
but global variable declarations are wider because the short
keyword def has been replaced by initialize global.

Consistency: This dimension measures the interplay between
similarity of notation and similarity of concepts. AI2 is more
consistent than AI1 in its plug/socket notation because (1) it
removes AI1’s special cases for name declaration blocks that
plug into parameter sockets and (2) it removes AI1’s extensible
sockets, as in procedure definitions (Fig. 3b), so that every
empty AI2 socket indicates a hole that must be filled in order
for the program to be complete.

AI2’s representation of variable declarations and references
is also more consistent than AI1’s. In AI2, the same text box
representation is used for all variable and parameter declara-
tions. Additionally, all AI2 blocks that manipulate variables use
the same salmon color scheme. In contrast, AI1 uses light blue
for parameter declarations and all variable references (which
adds to the confusion between name and value blocks) and
a darker blue for global variable declarations and setters.

Hidden Dependencies: This dimension measures the visibility
of important links between entities. No blocks language we
know of (including AI1 and AI2) does a good job of directly
showing (1) the declaration associated with the reference to
a variable or (2) all references for a variable declaration.
In AI1 and AI2, some sense of the second property can be
gained indirectly by changing the declared name and seeing
which getter/setter names change, but this is not very effective.
Visualizing these dependencies is an area for future work.

IV. CONCLUSION AND FUTURE WORK

We have developed naming features in AI2 that address
numerous naming problems in AI1 and other blocks languages.
Our design is a novel approach to naming in blocks languages
that expresses fundamental naming ideas from computer sci-
ence and mathematics, such as the relationship between name
declarations and references, the locality and scope of names,
and the consistent renaming of a declaration and all its
references in a way that avoids variable capture. Our design
improves upon the handling of naming in several cognitive
dimensions: it is less error-prone, less viscous, and more
consistent than in other blocks languages.

We are exploring two ways to improve AI2’s naming
features. First, to address the hidden dependency problem,
we are investigating ways to visualize variable scope and
the relationship between variable references and declarations.
When dragging a getter/setter block, an explicit connection
between the reference block and its declaration can be drawn
and a shaded region of the declaration’s scope can be shown
to indicate all areas of the code in which its references can
be used. Second, we are developing a feature that allows AI2
blocks to be represented as text within generic code blocks,
and also allows these text-based blocks to be converted back
and forth between regular AI2 blocks. This will allow writing
code before declaring the names used in that code, addressing
the premature commitment problem.

We plan to conduct a series of user studies that will help
us guide the design of these improvements and measure the
effectiveness of existing AI2 naming features.

Using cognitive dimensions to analyze naming features in
App Inventor was a valuable exercise. It would be worthwhile
to use cognitive dimensions to evaluate and compare existing
blocks languages for a broader set of features.

ACKNOWLEDGMENTS

This work was supported by Wellesley College Faculty
Grants, by sabbatical funding from Wellesley College and
the University of San Francisco, and by the National Science
Foundation under grants DUE-1226216 and DUE-1225745.

REFERENCES

[1] Neil Fraser, Blockly website, https://code.google.com/p/blockly, ac-
cessed May 16, 2014.

[2] Code.org, Hour of Code website, http://code.org/learn, accessed May
16, 2014.

[3] Scratch project, MIT Lifelong Kindergarten Group, http://scratch.mit.
edu/, accessed May 16, 2014.

[4] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
Scratch programming language and environment,” ACM Transactions
on Computing Education, vol. 10, no. 4, Nov. 2010.

[5] App Inventor website, http://appinventor.mit.edu, accessed May 16,
2014.

[6] StarLogo TNG project, MIT Scheller Teacher Education Program, http:
//education.mit.edu/projects/starlogo-tng, accessed May 16, 2014.

[7] T. R. G. Green, “Cognitive dimensions of notations,” in People and
Computers V, A. Sutcliffe and L. Macaulay, Eds. Cambridge, UK:
Cambridge University Press, 1989, pp. 443–460.

[8] T. R. G. Green and M. Petre, “Usability analysis of visual programming
environments: A ’cognitive dimensions’ framework,” Journal of Visual
Languages and Computing, vol. 7, pp. 131–174, 1996.

[9] Johanna Okerlund, Understanding App Inventor Runtime Errors,
Wellesley Science Center Summer Research poster, Aug. 2013. Avail-
able at http://www.tinkerblocks.org/pubs.

[10] F. Turbak, S. Sandu, O. Kotsopoulous, E. Erdman, E. Davis, and
K. Chadha, “Blocks languages for creating tangible artifacts,” in
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC ’12), Oct. 2012, pp. 137–144.

