
Introduction to the Emacs Editor

Scott D. Anderson
�

Wellesley College
Scott.Anderson@acm.org

c
�

Fall 2004

1 What is Emacs?

Emacs is an editor: a program that allows you to modify
files. Many of you have already used an editor, so it may
be easier to think of it as similar to, but different from, edi-
tors such as vi, Microsoft WORD, or Corel WordPerfect.
The latter two are intended to create typeset documents,
so they include commands to manage fonts, margins and
other word processing features. For that reason, they are
pretty different from Emacs. Emacs is not a word proces-
sor; it’s similar only in that you use them to modify the
contents of files (as opposed to, say, playing Solitaire).

Emacs is an editor of ASCII (plain text) files. In this,
they are more similar to the Windows program called
“Notepad” or the Macintosh program called “Simple-
Text.”

2 Overview of Emacs

Emacs is an editor available on most UNIX systems; in-
deed, there are implementations for Windows 95 and the
Macintosh, too. It’s pretty simple to use: just type into
the file. Many commands are available via menus, just
as in MS Word. Still more commands are available via
keyboard shortcuts and named functions. As with Word,
you can become a “power user,” by learning the keyboard
shortcuts. This document is primarily for those who want
to become power users.

By default, any character you type is put into the file
at that point. (The “point” is usually marked by a rectan-
gular block on the screen.) Since normal characters like
“a” or “$” are inserted into the file, you have to use ab-
normal characters to give commands to Emacs. There are
essentially five ways to give commands to Emacs:

� Menus. I won’t tell you more about this, because
you already know how. One thing to keep in mind,
though, is that Emacs often creates special menus

�
My thanks to J. Ross Beveridge of Colorado State University, who

sent me an Emacs primer that became the core of this document.

and menu items for different kinds of files (Java ver-
sus LATEX for example), so the menus many change.

� Control characters. This is when you hold down the
control key, which is usually at the left side of your
keyboard, near the shift key, and type a letter. For
example, hold down control and type “b” and you’ve
typed a “control-b”1 In Emacs documentation, a con-
trol letter like “control-b” is written as C-b. That
means to hold down the control key and type an
“b”—don’t type the hyphen. By the way, C-bmoves
the cursor backward one character.

� Prefix characters. This is where the command is ac-
tually a sequence of keystrokes, the first of which is
called the prefix. For example, you can save your file
by typing C-x C-s. The “C-x” is the prefix. Lots
of commands start with C-x. Another is C-x u,
which is the undo command.

� Modified characters. On certain keyboards, there are
extra modifier keys. A modifier key is like the shift
key: it changes the character when held down as the
character is typed. Shift turns “b’ into “B.” Control
turns “b” into “control b.” Similarly, the meta key
turns “b” into “meta b.” On some keyboards, the
meta key is actually marked, just like the control key.
On other keyboards, one of the existing keys is as-
signed to be the meta key, such as the Alt key. Here
at Wellesley, the “Alt” key is the meta key. So, for
example, to use the “meta b” command, hold down
the Alt key and type a “b.” That command would be
documented as M-b (analogously to C-b). The M-b
command backs the cursor up by one word.

What if your keyboard doesn’t have a meta key, not
even one that is assigned? (This often happens if
you are using Emacs via a modem and a terminal
emulator; for example, you’re logged into a Linux

1This is actually a ASCII character. It’s number 2 in the ASCII code,
while an “B” is number 66 and “b” is number 98. Do “man ascii” to see
a table of the whole ASCII character set. All the control codes are in the
beginning, so “control-a” is number 1, “control-b” is number 2 and so
forth.

1



machine using telnet or SSH.) You can always use
the Escape key (marked ESC) as a prefix character
to mean meta. Note that ESC is not a modifier key,
so you first type ESC, release the key, and then type
“b.” Meta keys are not in the 7-bit ASCII character
set, but the ESC character is (it’s number 27).

By the way, sometimes these modifier keys are com-
bined. If you hold down both meta and control and
type a “b” you get the C-M-b command, which goes
backward by one parenthesized expression. If you
don’t have a meta key, type ESC followed by C-b.

� Extended commands. Emacs has so many com-
mands that there are not enough keystrokes (or menu
items) for them all, so you have to specify their
names. This is done with the less commonly used
commands, so you won’t need this much until you
become more experienced. First, you have to type a
prefix, which is M-x and then Emacs prompts you
for the name of the command in the minibuffer2 Af-
ter you type the name of the command,3 you press
the return key, which is documented as “RET,” just
as if this were the unix command line. An example is
M-x man RET which prompts you for some input
and runs the UNIX “man” command on that input
and puts the result into a buffer for you, which then
allows you to search it, edit it, save pieces, and so
forth.

Note that you can get any command via M-x; it’s
just that the more common commands are bound
to keys. When the documentation talks about “key
bindings,” they’re talking about the connection be-
tween keystrokes and commands. You can modify
those key bindings if you want to.

Finally, when you start Emacs you’ll notice some menus
and icons, so you can also issue commands by using the
mouse. Power users spend most of their time using key-
board commands, so that’s what I’ll describe in this doc-
ument.

Emacs allows you to edit several files at once. The
window for Emacs can be divided into several “windows”
each of which contains a view into a buffer. Furthermore,
on a windowing system, you can start up multiple win-
dows (Emacs calls them frames) each of which seems

2The minibuffer is a line at the very bottom of the Emacs window,
right below the status line, (which is the one that tells you what file
you’re editing and information like that). The minibuffer is used anytime
Emacs needs more information from you in order to execute a command;
and it’s used whenever Emacs to tell you something short in response to
a command.

3Emacs has what is called completion, meaning that as you type in a
command, you can type a space or tab at any time and Emacs will either
fill out the rest (if there is only one possible completion) or it will list the
possible completions. This tremendously reduces the amount of typing
and prevents mistakes.

to have Emacs running in it, but there’s really only one
Emacs process behind all of it. Each Emacs buffer typ-
ically corresponds to a different file. Many of the com-
mands listed below are for reading files into new buffers
and moving between buffers. This ability to edit several
files means that you should typically start Emacs only
once. If you start it more than once, you run the risk of
editing a file in two different Emacsen and accidentally
overwriting your changes.

Most Emacs users start up Emacs once when they login
and only exit it when they logout. Instead, they just save
buffers and switch to another window where they run the
compiler or whatever. Consequently, very little effort has
gone into make Emacs start quickly.

3 Using Emacs, Getting Started

If you’re logged into the console, so you have a window
manager available, the easiest way to start Emacs is from
the menu. Under Gnome, the default window manager
here are Wellesley, you can find Emacs under by clicking
on the Red Hat, then “programming,” then “Emacs.” It
will come up and have a bunch of information about get-
ting help and running the tutorial. I highly recommend the
tutorial. The initial buffer will be *scratch*. You can
then use commands to read in files as necessary.

Alternatively, you can start Emacs from the command
line. This is useful when you’re logged in remotely
via telnet or SSH. To use Emacs on a file, type emacs
filename. Note that, if you’re running in a windowing
environment, this will typically start up Emacs in a sepa-
rate window, so you should follow the command with an
ampersand:

% emacs filename &

If you prefer that Emacs run in the current window,
rather than starting its own window, do the following:

% emacs -nw filename

The “-nw” switch means “no window.” Not that there’s
no ampersand.

If the file exists, then the first screen’s worth of the file
will be displayed; if it doesn’t exist, a help message will
be displayed. Alternatively, you can start up Emacs from
the command line without mentioning a file, in which case
it comes up just as described in the previous paragraph.

To give you a head start, the following lists some basic
commands you will need to know to use Emacs to edit a
file. An exclamation point to the left of the commands
indicate those to learn immediately.

2



3.1 Help Commands

All the help commands, and there are a lot of them, are or-
ganized under C-h, so type C-h followed by a single let-
ter or control letter to learn more about Emacs. I strongly
recommend the tutorial. Others can probably wait.

C-h help-command, prefix character for lots of useful
help commands

C-h t help-with-tutorial, command to run the tutorial

C-h i info describes most of the emacs commands in
man style pages

C-h k describe-key tells you what a particular keystroke
does

C-h a command-apropos, prompts for a string and then
searches for all emacs commands that contain that
string

C-h ? help-for-help, describes how to use the help fa-
cilities

3.2 File Reading and Writing Commands

C-x C-f find-file, first prompts for a filename4 and then
loads that file into a editor buffer of the same name.
If the file doesn’t exist, Emacs creates it, so this com-
mand is like the “File/New” and “File/Open” menu
items you find in applications like MS Word.

C-x C-s save-buffer, saves the buffer into the associ-
ated filename. Do this a lot, to save your changes to
disk. This is like “Save” in MS Word.

C-x C-w Write named file, prompts for a new filename
and writes the buffer into it. This is like the “Save
As” menu item from MS Word.

3.3 Movement Commands

Each Emacs buffer has a location called “point,” which is
where new input will go. There are zillions of commands
to move the point. In addition, the arrow keys and clicking
with the mouse work too. You can change the window
(but not the point) by using the scroll bars.

However, I’d like to encourage you to learn some of
these movement keyboard commands. First of all, there
are circumstances (some sshconnections), when the arrow
keys and the mouse won’t work. Secondly, the movement
commands can be more efficient. Using the arrow keys

4Recall that Emacs has completion, meaning that as you type in a
filename, you can type a space or tab at any time and Emacs will either
fill out the rest (if there is only one possible completion) or it will list the
possible completions. This tremendously reduces the amount of typing
and prevents mistakes.

takes no effort to learn, but you pay for that every time
you have to move a long way. Some users don’t seem to
mind holding down an arrow key for 10 seconds when a
few C-v commands would have the same effect, but you
won’t know you have a choice unless you try to learn C-v
and other such commands.
C-a put cursor at beginning-of-line
C-e put cursor at end-of-line
C-b go backward one char
C-f go forward one char
C-n go to next line
C-p go to previous-line
C-v scroll-up by one screenful
M-v scroll back by one screenful
M-< go to beginning-of-buffer
M-> go to end-of-buffer
M-b go backward one word
M-f go forward one word

3.4 Copy, Kill and Yank Commands

Word processing programs refer to “copy and paste,” but
Emacs calls them “copy and yank.” (You might argue
that Emacs should change, but Emacs has been calling
it “yank” for over twenty years and it’s a hard habit to
break.) Anything that is deleted (“killed”) is remembered
(in the “kill-buffer”) and can be “yanked” back at any lo-
cation.

C-d delete-char

M-d delete from cursor to end of word immediately
ahead of the cursor

C-k kill-line, delete the rest of the current line

C-@ set-mark-command, the mark is used to indicate
the beginning of an area of text to be killed, copied
or whatever

C-w kill-region, delete the area of text between the
mark and the current cursor position

M-w copy-region-as-kill, copy area between mark and
cursor into kill-buffer so that it can be yanked into
someplace else

C-y yank, insert at the point whatever was most re-
cently killed or copied

M-y yank-pop, insert at the point whatever was killed
or copied previous to the last yank or yank-pop

3



3.5 Search Commands

Emacs uses something called “incremental search,” which
I think is much better than search commands on other ed-
itors. Say you want to search for “administration.” Rather
than prompt you for the entire search string, Emacs lets
you type it one letter at a time. Each letter you type causes
Emacs to show you the next occurrence. So, you type C-s
(incremental search) and the letter “a,” and Emacs shows
you the next “a” in the file. Then you type “d” and Emacs
shows you the next occurrence of “ad.” Then you type
“m” and emacs shows you the next occurrence of “adm.”
By the time you’ve typed “admin,” you’ve probably al-
ready found the occurrence of “administration” that you
were looking for, and you had to type only a fraction of
the search string. If you get to the end of the search string,
just keep typing C-s and it shows you the next occurrence.

C-s isearch-forward, incremental search prompts for a
string and searches forward in the buffer for it. It
starts searching immediately

C-r isearch-backward, like isearch-forward, but goes
backwards

M-% query-replace, prompts for a search string and a
string with which to replace the search string

3.6 Window and Buffer Commands

Emacs can divide up the window you see into subwin-
dows. This can be useful for viewing two buffers at once,
or getting help while editing a buffer. The help system
will automatically throw you into two-window mode, so
it can be useful to know a little about this right away.

C-x 0 deletes current window

C-x 1 deletes other window

C-x 2 splits current window into two parts, so you can
edit at two different locations in the same file or so
that you can view two different files at the same time

C-x b switch-to-buffer, display a different buffer on
the screen

C-x o move the cursor to the other window (assuming
that you have two windows/buffers open at once)

C-x C-b list-buffers, shows the buffers currently
loaded into emacs

3.7 Exiting Emacs, Fixing Mistakes and
Other Important Stuff

Here are some miscellaneous but very useful commands.

C-x C-c save-buffers-kill-emacs, when you are fin-
ished editting, it offers to save editted but unsaved
buffers and then exits

C-g keyboard-quit, if while typing a command you
make a mistake and want to stop, this aborts com-
mands in progress. If Emacs ends up in some state
you don’t understand, try typing this a few times.

C-u universal-argument, if you want to do a command
several times type this command followed by a num-
ber (for the number of times) followed by the com-
mand you wish repeated. For example, to go for-
ward 300 lines, you could type C-n 300 times or
C-u 300 C-n. It’s also used to modify the behav-
ior of some commands. You’ll see that in the docu-
mentation as “with prefix argument...,” in which case
you know to press C-u before the command to get
that behavior.

C-x u (also C-/ and C-_): undoes the last change, in
case you made a mistake. You can undo multiple ed-
its; I’ve never really found the end of Emacs’s undo
memory.

M-x execute-extended-command,prompts for the name
of an Emacs command, allows you to execute com-
mands if you know roughly what it is called but can-
not remember the key strokes for it. I mentioned this
at the beginning of the document.

4 Customizing Emacs

Perhaps the biggest difference between Emacs and other
editors, is that Emacs is designed to be customizable. It
has a built-in way to run programs written by users (in
a programming language called Emacs-lisp or “elisp” for
short) and loaded into Emacs. Many, many people have
written extensions to Emacs to do all kinds of things.
When you’re more experienced, perhaps you’ll be one of
them.

There are simpler ways to customize Emacs than writ-
ing code. Often it’s as simple as setting the value of a
variable. For example, suppose you would like Emacs to
save backup versions of your files. You would set some
variables to true by doing the following:

(setq make-backup-files t)
(setq version-control t)

Where do you put these variable settings? You put them
into a file called ˜/.emacs. When Emacs starts up, it
reads in and evaluates all the code in that file. Your ac-
count should already have a .emacs file; check it out
sometime.

4



5 Backspace versus Delete

On PCs, the convention is that the Backspace key deletes
the character to the left of the insertion point (the previ-
ous character), and the Delete key deletes the character to
the right of the insertion point (the next character). On
UNIX systems and other older operating systems (Mul-
tics, TOPS-20, . . . ), it’s typically the case that the Delete
key deletes the previous character and the Backspace key
does something else, such as backing up but not deleting
the character.5 Consequently, the Backspace key wasn’t
used very often. Note, by the way, that Backspace and
Delete are both ordinary ASCII characters: Backspace is
the same as C-h, which is character 8; Delete is character
127.

Early in Emacs’s history, the implementors decided
that since Backspace wasn’t used much, and that C-h
would be mnemonic for “help,” they assigned C-h to be
the prefix character for all of the built-in help facilities.
Of course, this meant that the Backspace key also was
a prefix character for help, since (at the time) the com-
puter couldn’t tell the difference between backspace and
C-h. Since most people didn’t use the Backspace key,
this wasn’t a problem.

Modern computer keyboards can tell the difference be-
tween C-h, Backspace and Delete. Most Linux ma-
chines make the Backspace and Delete keys act the same
way, deleting the previous character. If you want to delete
the next character (PC-style Delete), try to get used to typ-
ing C-d, the Emacs command to delete forward. This will
be more efficient than using the arrow key to go forward
and then pressing the Delete key. (When you get more
advanced, you can re-bind the Delete key to be the same
as C-d.)

6 XEmacs versus Emacs

There have been many implementations of Emacs over
the years (the editor is over twenty years old) and so the
word “Emacs” often means, generically, any one of those
implementations. They are quite similar, although many
features have been added over the years.

Currently, there are two major implementations: GNU
Emacs, written by the Free Software Foundation (FSF)
and XEmacs, written by the XEmacs organization. They
are both free, both very good, and very similar. Thousands
of organizations all over the world use one or the other,
and sometimes both.

5This makes it possible to actually underline something, by typing it
and then backing up and typing underline characters.

7 Parting Words

Emacs has many, many other useful commands. A par-
tial listing, more compact than this document, is in the
emacs-refcard-letter files that are in the same
place where you got this file. As you get more proficient
at it, try listing the key bindings (C-h b) to find other
commands. There is also an enormous amount of on-line
documentation, either via C-h m (help with this mode),
C-h F (the FAQ), or C-h i (the info pages, which are
hyperlinked manual pages).

5


