TypeScript: From JavaScript
to Blockly and Back

Thomas Ball

Microsoft Research

Richard Knoll

Microsoft

Abstract

While there are many JavaScript libraries for building solu-
tions for a wide range of problems, it’s not easy for novices to
harness their power. We show how TypeScript, a gradually
typed superset of JavaScript, can be used to bridge the gap be-
tween JavaScript and Blockly, a framework for creating block-
based programming environments that greatly reduces the
potential for syntax and semantic errors. In particular, we de-
fine a mapping from TypeScript to Blockly that makes it sim-
ple to create a domain-specific Blockly editor for a JavaScript
library via a TypeScript declaration file. This mapping is sup-
ported by Microsoft MakeCode (https://makecode.com). An
online editor for exploring the mapping from TypeScript to
Blockly is at https://makecode.com/playground.

1 Introduction

Introducing programming to beginners used to be a pro-
cess fraught with accidental complexity, due to the need
to install toolchains and IDEs, typically created with the
professional developer in mind. Today, the web has made
available a plethora of programming environments; most
any programming language can be experienced via the web.
Some popular examples include:

e JavaScript: https://jsfiddle.net/;
o Python: https://www.learnpython.org;
e C, C++, Ruby, ...: https://repl.it/.

Not surprisingly, all the above approaches still use text edi-
tors for coding; this means that the possibility of introducing
errors is still great, especially for beginners who don’t under-
stand the language. Features such as step-by-step tutorials
and autocomplete can improve the experience, but the start-
ing point still is not the most welcoming.

The “Hour of Code” experience,! has introduced over three
hundred million students to coding,? with the express pur-
pose of demystifying and breaking stereotypes about coding.
In order to reach this many people, code.org used Google’s
Blockly,?® a JavaScript framework inspired by MIT’s Scratch

!https://hourofcode.com/learn
Zhttps://code.org/about/2016
3https://github.com/google/blockly

Peli de Halleux

Microsoft Research

Sam El-Husseini
Microsoft

Michal Moskal
Microsoft Research

& C' | @& Secure https://studio.code.or stage/1/puzzle/1

Minecraft Hour of Code il

MINECRARY : \
| Add a second block to reach the sheep.
1<y
Blocks Workspace: 2 / 3 blocks

(move forward |

[0 efco v

LT right U v |

move forward

Figure 1. Hour of Code example.

programming environment [1], to provide a very simple be-
ginning programming experience, free of the possibility of
syntax errors.

Figure 1 shows a screen snapshot from one of the many
“Hour of Code” tutorials, in the family of “maze solving” prob-
lems. In this example, the goal is to program the Minecraft
avatar “Steve” on the left of the tiny 2D world to move to the
sheep on the right. To create a program, the user selects from
a simple palette of three blocks (shown under the “Blocks”
heading) and drags these blocks into the workspace. In this
very simple example, the program is simply a sequence of
commands. In later examples, concepts such as loops and
conditionals are introduced.

In Blockly, colored blocks represent structured control-
flow statements such as loops and if-then-else condition-
als, as well as program expressions, values, and variables.
Blocks also represent function calls to domain-specific APIs,
via Blockly’s support for custom blocks.* In the case of Fig-
ure 1, the domain-specific APIs are the commands for moving
“Steve”. Blockly can be compiled to a variety of languages,
the main target being JavaScript, as Blockly itself is written
in JavaScript and hosted in a web browser.

As the Blockly documentation states, “Blockly is a compli-
cated library targeted at experienced developers”, using both
the XML format and JavaScript APIs for creating custom
blocks programmatically.

BLOCKS+2018, Nov. 4, 2018, Boston, MA
2018.

4 https://developers.google.com/blockly/guides/create-custom-blocks/

overview

https://makecode.com
https://makecode.com/playground
https://jsfiddle.net/
https://www.learnpython.org
https://repl.it/
https://hourofcode.com/learn
https://code.org/about/2016
https://github.com/google/blockly
https://developers.google.com/blockly/guides/create-custom-blocks/overview
https://developers.google.com/blockly/guides/create-custom-blocks/overview

W N =

BLOCKS+2018, Nov. 4, 2018, Boston, MA Thomas Ball, Peli de Halleux, Sam El-Husseini, Richard Knoll, and Michal Moskal

on button B w

Statementl
on button A w

Statement2

(@) (b)

Figure 2. Block for event handling.

Our goal is to make it easier to bring the Blockly edit-
ing experience to more domains, leveraging the numerous
JavaScript libraries available on the web, but without needing
to become experienced with the Blockly framework.

TypeScript (www.typescriptlang.org) is a superset of the
JavaScript language that is gradually typed, meaning that
types may optionally be added to JavaScript code to pro-
vide for a more productive programming and debugging
experience. Many JavaScript frameworks provide TypeScript
declaration files, as can be found at the Definitely Typed
GitHub repo.’

Our contribution is to describe a mapping from TypeScript
annotated JavaScript APIs to Blockly that greatly simplifies
the process of making JavaScript code available via Blockly.

It is not our goal to map every TypeScript programming
construct into Blockly, as a one-to-one mapping of the Type-
Script abstract syntax tree (AST) nodes to blocks would pro-
vide no abstraction, exposing the beginner to a visual repre-
sentation of TypeScript in its full glory.

Rather, the goal is to support common programming paradigms
with a simple mapping from TypeScript to blocks and back.
This mapping exposes many TypeScript elements (eg., classes,
nested functions, etc.) as uneditable blobs, while certain id-
ioms (eg., for (let i = 0; i < expression; ++i)) are exposed as
specialized blocks. This supports Blockly’s goal to provide
a simplified programming experience with higher-level ab-
stractions.

W N =

2 Example

Below is an example of a TypeScript function onButton, with
parameters b and f, that represents a common JavaScript
pattern of registering an event handler (f) to be executed
when some event occurs (in this case, a press of button A or
button B, as specified in the enumeration Button):

export enum Button { A, B };
//% block="on button $b"
export function onButton(b: Button,
f: () => void): void { }

Shttps://github.com/DefinitelyTyped/DefinitelyTyped

The function onButton is explicitly typed using TypeScript’s
support for type annotations: each parameter has a type,
which follows the colon; furthermore, the return type of the
function also is specified as void.

The comment annotation specifies that a block B should be
created for the function and that the text of the block should
be “on button”, as shown in Figure 2(a), with a single in-line
parameter for the enumeration parameter b. The function
definition and its types define the block’s two inputs:

e a value input corresponding to the parameter b which
allows selection of one of two possible parameter values,
either “A” or “B”, corresponding to the the two possible
values for the enumeration Button — while an enumeration
is realized as a JavaScript number, a Blockly field selector
for this parameter only allows the user to choose either
“A” or “B” (0 or 1);

e a statement input corresponding to the parameter f that
allows the user to drag statement blocks inside of block B
to define the body of the lambda function passed to f.

By default, a function that takes a function as its last parame-
ter will give rise to a block with a statement input. Handling
multiple function arguments is a direction for future work.

Figure 2(b) shows the event handler block with two blocks
inside it, after an editing session by the user. The translation
of the event handler block into TypeScript will yield the
following code:

onButton (Button.B, function () {
Statementl ;
Statement2 ;

b

3 Language Mapping
Users can explore the various mappings between TypeScript
and blocks supported by MakeCode at https://makecode.
com/playground, including namespaces, functions, classes,
and factories. MakeCode also has a variety of field editors to
make it easier to input data for particular types.

MakeCode supports compilation of Blockly to TypeScript
and decompilation of TypeScript to Blockly.®

See MakeCode Labs (https://makecode.com/labs) for a set
of example MakeCode editors created using the TypeScrip-
t/Blockly mapping.

References

[1] Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez, Natalie
Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum,
Jay S. Silver, Brian Silverman, and Yasmin B. Kafai. 2009. Scratch:
programming for all. Commun. ACM 52, 11 (2009), 60-67. http://doi.
acm.org/10.1145/1592761.1592779

6 See https://github.com/Microsoft/pxt/tree/master/pxtblocks and https:
//github.com/Microsoft/pxt/tree/master/pxtcompiler/emitter.

www.typescriptlang.org
https://github.com/DefinitelyTyped/DefinitelyTyped
https://makecode.com/playground
https://makecode.com/playground
https://makecode.com/labs
http://doi.acm.org/10.1145/1592761.1592779
http://doi.acm.org/10.1145/1592761.1592779
https://github.com/Microsoft/pxt/tree/master/pxtblocks
https://github.com/Microsoft/pxt/tree/master/pxtcompiler/emitter
https://github.com/Microsoft/pxt/tree/master/pxtcompiler/emitter

	Abstract
	1 Introduction
	2 Example
	3 Language Mapping
	References

