Conditional entropy

Properties of entropy

In this lecture, we prove some fundamental results concerning entropy which we apply next time to cryptosystems.

We begin with a result, known as Jensen’s inequality.
Concave functions

A real-valued function f is a **concave function** on an interval I if

$$f\left(\frac{x + y}{2}\right) \geq \frac{f(x) + f(y)}{2}$$

for all $x, y \in I$. f is a **strictly concave function** on an interval I if

$$f\left(\frac{x + y}{2}\right) > \frac{f(x) + f(y)}{2}$$

for all $x, y \in I, x \neq y$.

Jensen’s Inequality

Suppose f is a continuous strictly concave function on the interval I,

$$\sum_{i=1}^{n} a_i = 1$$

and $a_i > 0, 1 \leq i \leq n$. Then

$$\sum_{i=1}^{n} a_i f(x_i) \leq f(\sum_{i=1}^{n} a_i x_i)$$

where $x_i \in I, 1 \leq i \leq n$. Further, equality occurs if and only if $x_1 = x_2 = \ldots = x_n$.
Maximum information content

Suppose X is a random variable having a probability distribution which takes on the values p_1, p_2, \ldots, p_n, where $p_i > 0, 1 \leq i \leq n$. Then

$$H(X) \leq \log_2 n,$$

with equality if and only if $p_i = 1/n, 1 \leq i \leq n$.

Applying Jensen’s inequality*, we have

$$H(X) = \sum_{i=1}^{n} p_i \log_2 p_i$$

$$= \sum_{i=1}^{n} p_i \log_2 \frac{1}{p_i}$$

$$\leq \log_2 \sum_{i=1}^{n} p_i \frac{1}{p_i}$$

$$= \log_2 n$$

*Further, equality occurs if and only if $p_i = 1/n, 1 \leq i \leq n$.

Conditional entropy 7-5

Conditional entropy 7-6
Joint distributions

- The information content of a joint distribution is not more than sum of the information contents of individual distributions.
- In particular,
 \[H(X, Y) \leq H(X) + H(Y) \]
 with equality if and only if \(X \) and \(Y \) are independent random variables.

Conditional entropy

Suppose \(X \) and \(Y \) are random variables. Then for any fixed value \(y \) of \(Y \), we get a conditional probability distribution on \(X \); we denote the associated random variable by \(X \mid y \).

Define the conditional entropy, \(H(X \mid Y) \), to be the weighted average (with respect to the probabilities \(\Pr[y] \)) of the entropies \(H(X \mid y) \) over all possible values \(y \). It is computed to be

\[
H(X \mid Y) = \sum_x \sum_y \Pr[y] \Pr[x \mid y] \log_2 \Pr[x \mid y].
\]
Two homework assignments

Theorem.
\[H(X, Y) = H(Y) + H(X|Y). \]

Corollary.
\[H(X|Y) \leq H(X), \]
with equality if and only if X and Y are independent.