Substitution-permutation ciphers

Linear cryptanalysis

Block ciphers

- Modern product ciphers incorporate a sequence of permutation and substitution operations.

Modern product ciphers incorporate a sequence of permutation and substitution operations.
Substitution-permutation networks

- The game is to do this over and over again, substitution for confusion and permutation for defusion.
- A typical iterated cipher requires a round function and key schedule.

Key schedules and round functions

- Round keys, $K^1, ..., K^{Nr}$, are constructed from a random binary key, K, using some fixed, public algorithm.
- A round function, g, takes inputs K^r and a current state w^{r-1} and produces the next state, w^r.

\[
\begin{align*}
 w^0 & \equiv x \\
 w^1 & \equiv g(w^0, K^1) \\
 w^2 & \equiv g(w^1, K^2) \\
 \vdots \\
 w^{Nr-1} & \equiv g(w^{Nr-2}, K^{Nr-1}) \\
 w^N & \equiv g(w^{Nr-1}, K^{Nr}) \\
 y & \equiv w^N
\end{align*}
\]

*The plaintext is the initial state, w^0.
Substitution and permutation

- Plaintext and ciphertext are broken into binary sequences of length lm, the block length.
- A permutation $\pi : \{0, 1\}^l \rightarrow \{0, 1\}^l$, called an S-box, substitutes each set of l bits for another.
- A permutation $\pi : \{1, \ldots, lm\} \rightarrow \{1, \ldots, lm\}$ mixes everything up.

In the example shown, . . .

- . . . the S-boxes are given by the substitutions:

 \[
 \begin{array}{cccccccccccc}
 x & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
 r_{\text{S}}(x) & D & 1 & F & E & B & A & C & F & E & D & 1 & F & E & B & A & C \\
 \end{array}
 \]

- . . . while the permutation is:

 \[
 \begin{array}{cccccccccccccccccccc}
 x & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
 r_{\text{P}}(x) & 1 & 5 & 6 & 10 & 14 & 2 & 7 & 11 & 15 & 4 & 8 & 12 & 16 & 13 & 9 \\
 \end{array}
 \]

Linear cryptanalysis 12-5
We still need a key schedule

- Given a 32-bit key $K = (k_1, ..., k_{32})$, define K', for $1 \leq r \leq 5$, to consist of 16 consecutive bits of K, beginning with k_{4r-3}.
- For K given by

 $\begin{align*}
 K_1 &= 0011 \ 1010 \ 1001 \ 0100 \ 1101 \ 0110 \ 0011 \ 1111 \\
 K_2 &= 1010 \ 1001 \ 0100 \ 1101 \\
 K_3 &= 1001 \ 0100 \ 1101 \ 0110 \\
 K_4 &= 0100 \ 1101 \ 0110 \ 0011 \\
 K_5 &= 1101 \ 0110 \ 0011 \ 1111
 \end{align*}$

For $x = 0010 \ 0110 \ 1011 \ 0111$

$\begin{align*}
 x^0 &= 0010 \ 0110 \ 1011 \ 0111 \\
 x^1 &= 0011 \ 1010 \ 1001 \ 0100 \\
 x^2 &= 0001 \ 1100 \ 0010 \ 0011 \\
 x^3 &= 0100 \ 0110 \ 1101 \ 0001 \\
 x^4 &= 0010 \ 1110 \ 0000 \ 0111 \\
 x^5 &= 1010 \ 1001 \ 0100 \ 1101 \\
 x^6 &= 0011 \ 1000 \ 0010 \ 0110 \\
 x^7 &= 0100 \ 0001 \ 1011 \ 1000 \\
 x^8 &= 0011 \ 0000 \ 1101 \ 0110 \\
 x^9 &= 0001 \ 0100 \ 1101 \ 0101 \\
 x^{10} &= 1000 \ 0111 \ 0100 \ 1100 \\
 x^{11} &= 1010 \ 1001 \ 0100 \ 1101 \\
 x^{12} &= 0010 \ 1010 \ 1101 \ 1001 \\
 x^{13} &= 1101 \ 0110 \ 0011 \ 1111 \\
 x^{14} &= 1011 \ 1100 \ 1101 \ 0010
\end{align*}$
Linear cryptanalysis

- The object of linear cryptanalysis is to find a probabilistic linear relationship between subsets of plaintext and ciphertext bits*.
- The attacker computes XOR of relevant bits in relationship using various keys in order to find a key that yields a nonrandom distribution.

*Thus, this is known-plaintext attack.

Before the details, we need . . .

- Suppose, X_1, X_2, \ldots are independent random variables taking values from the set $\{0, 1\}$ such that:
 \[
 \Pr[X_i = 0] = p_i \quad \text{and} \quad \Pr[X_i = 1] = 1 - p_i
 \]
- The independence of X_i and X_j implies that:
 \[
 \begin{align*}
 &\Pr[X_i = 0, X_j = 0] = p_i p_j \\
 &\Pr[X_i = 0, X_j = 1] = p_i (1 - p_j) \\
 &\Pr[X_i = 1, X_j = 0] = (1 - p_i) p_j \\
 &\Pr[X_i = 1, X_j = 1] = (1 - p_i)(1 - p_j)
 \end{align*}
 \]
- We compute $\Pr[X_i \oplus X_j = 0]$ and $\Pr[X_i \oplus X_j = 1]$.

A random variable’s bias

- The bias of a random variable X_i is
 $\mathbb{E} = p \cdot \frac{1}{2}$

- Observe that
 $\mathbb{E} \cdot \frac{1}{2} \cdot \mathbb{E} \cdot \frac{1}{2}$
 $\Pr[X_i = 0] = \frac{1}{2} + \mathbb{E}$
 $\Pr[X_i = 1] = \frac{1}{2} - \mathbb{E}$

The piling-up lemma*

Lemma. Let $\mathbb{E}_{i_1, i_2, \ldots, i_k}$ denote the bias of the random variable $X_{i_1} \oplus X_{i_2} \oplus \ldots \oplus X_{i_k}$. Then

$$\mathbb{E}_{i_1, i_2, \ldots, i_k} = 2^{\sum_{j=1}^{k} \mathbb{E}_{i_j}}$$

Corollary. Let $\mathbb{E}_{i_1, i_2, \ldots, i_k}$ denote the bias of the random variable $X_{i_1} \oplus X_{i_2} \oplus \ldots \oplus X_{i_k}$. Suppose that $\mathbb{E}_{i_j} = 0$ for some j, then $\mathbb{E}_{i_1, i_2, \ldots, i_k} = 0$.

*Proof by induction on k.

Linear cryptanalysis 12-11

Linear cryptanalysis 12-12
Linear approximations of S-boxes

- Consider an S-box \(\mathcal{S} : \{0, 1\}^m \rightarrow \{0, 1\}^n \).
- Assume input chosen uniformly at random from \(\{0, 1\}^m \).
- Similarly, each output co-ordinate \(y_j \) defines a random variable \(Y_j \) taking values 0 and 1.

Thus, each input co-ordinate \(x_i \) defines a random variable \(X_i \) taking on values 0 and 1 and these \(X_i \) are independent with zero biases.

In our example, . . .

- . . . the permutation \(\mathcal{S} : \{0, 1\}^4 \rightarrow \{0, 1\}^4 \), is given by

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>y</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>y</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

- The random variable \(X_1 \oplus X_4 \oplus Y_2 \) is unbiased.

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
<th>Y_1</th>
<th>Y_2</th>
<th>Y_3</th>
<th>Y_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Linear cryptanalysis 12-13
Linear approximation table $N_L(a, b)$

<table>
<thead>
<tr>
<th>a</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

*Bias of the binary 8-tuple: $\mathbb{E}(a, b) = Pr(a,b) - 1/2 = N_L(a, b) - 1/2$.

A linear attack on an SPN

- We find a linear approximation of S-boxes incorporating four active S-boxes:
 - $S^1_2: T_1 = U_1^6 \oplus U_1^7 \oplus V_1^3 \oplus V_1^4$ has bias 1/4
 - $S^2_2: T_2 = U_1^6 \oplus V_2^3 \oplus V_8^3$ has bias -1/4
 - $S^3_2: T_3 = U_6^6 \oplus V_6^6 \oplus V_8^3$ has bias -1/4
 - $S^2_3: T_3 = U_1^6 \oplus V_1^3 \oplus V_1^3 \oplus V_8^3$ has bias -1/4

- Assuming independences of T_i, piling up lemma implies $T_1 \oplus T_2 \oplus T_3 \oplus T_4$ has bias -1/32.
Canceling “intermediate” variables

- The XOR of the T_i can be expressed in terms of plaintext bits, bits of u_4, and key bits.
 - $T_1 = U_1^1 \oplus U_1^5 \oplus V_6^1 \oplus V_8^1$
 - $= X_5 \oplus K_5^1 \oplus X_7 \oplus K_7^1 \oplus X_8 \oplus K_8^1 \oplus V_6^1$
 - $T_2 = U_6^2 \oplus V_6^2 \oplus V_8^2$
 - $= V_6^1 \oplus K_6^2 \oplus V_6^2 \oplus V_8^2$
 - $T_3 = U_6^3 \oplus V_6^3 \oplus V_8^3$
 - $= V_6^2 \oplus K_6^3 \oplus V_6^3 \oplus V_8^3$
 - $T_4 = U_{14}^1 \oplus V_{14}^1 \oplus V_{16}^1$
 - $= V_8^2 \oplus K_{14}^1 \oplus V_{14}^1 \oplus V_{16}^1$

Plaintext, bits of u^4 and keybits

- $T_1 \oplus T_2 \oplus T_3 \oplus T_4 = X_5 \oplus X_7 \oplus X_8 \oplus V_6^3 \oplus V_8^3 \oplus V_{14}^3 \oplus V_{16}^3$
 - $\oplus K_5^1 \oplus K_7^1 \oplus K_8^1 \oplus K_6^2 \oplus K_8^2 \oplus K_{14}^3$

- Next, replace the V_i^3 by expressions involving U_i^4.
 - $V_6^3 = U_6^4 \oplus K_6^4$
 - $V_8^3 = U_{14}^4 \oplus K_{14}^4$
 - $V_{14}^3 = U_8^4 \oplus K_8^4$
 - $V_{16}^3 = U_{16}^4 \oplus K_{16}^4$
Selecting the biased random variable

- The result

$$X_5 \oplus X_7 \oplus X_8 \oplus U_6^4 \oplus U_8^4 \oplus U_{14}^4 \oplus U_{16}^4 \oplus K_5^1 \oplus K_7^1 \oplus K_8^1 \oplus K_6^3 \oplus K_8^3 \oplus K_{14}^4 \oplus K_{16}^4$$

- If the keybits are fixed, then the random variable

$$K_5^1 \oplus K_7^1 \oplus K_8^1 \oplus K_6^3 \oplus K_8^3 \oplus K_{14}^4 \oplus K_{16}^4$$

has fixed value 0 or 1 and

$$X_5 \oplus X_7 \oplus X_8 \oplus U_6^4 \oplus U_8^4 \oplus U_{14}^4 \oplus U_{16}^4$$

has bias equal to $\pm 1/32$, where the sign depends on the values of the unknown key bits.

Candidate subkeys

- Recall our random variable

$$X_5 \oplus X_7 \oplus X_8 \oplus U_6^4 \oplus U_8^4 \oplus U_{14}^4 \oplus U_{16}^4$$

- There are $2^8 = 256$ possibilities for the keys that are XORed with the 2^{nd} and 4^{th} S-boxes in the final row.

- For each plaintext, ciphertext pair a partial decryption is possible, and the value of the random variable is computed.
Success

- It is suggested that a linear attack based on a linear approximation having bias equal to ε will be successful if the number of plaintext-ciphertext pairs is approximately $c\varepsilon^2$, for a small constant c.