

 1

CS111 EXAM 1
March 05, 2015

YOUR NAME*: ___

 *by writing your name above you are stating that you abided by the course policies while taking this exam

Please indicate your lecture by checking the appropriate box (so we can return your exam to you):

 !Lyn 9:50am ! Rhys 11:10am ! Rhys 1:30pm

This exam has 5 problems. Some problems have several parts. The number of points for
each problem is shown in square brackets next to the problem or part. There are 100
total points on the exam.

Write all your answers on the exam itself.

The exam is open book. You may refer to your notes, and other course materials except
that you may not use another person’s notes, or any materials from prior
semesters of CS111. You may not access any electronic device at any time.

Please keep in mind the following tips:

• First skim through the entire exam. Work first on the problems on which you feel

most confident. You do not need to do the problems in the order they are presented.

• Try to do something on every problem so that you can receive partial credit. For

programming problems, you can receive partial credit for explaining your strategy
with words and pictures.

• Allocate your time carefully. If you are taking too long on a problem, wrap it up and

move on.

The following table will be used in grading your exam:

Problem Score

Problem 1 [21 pts]

Problem 2 [12 pts]

Problem 3 [16 pts]

Problem 4 [12 pts]

Problem 5 [39 pts]

Total [100 pts]

 2

Problem 1: Capture the Pattern [21 points]

I must govern the clock, not be governed by it – Golda Meir.

Using cs1graphics, the canvas above can be produced with the code below:

from cs1graphics import *

wall = Canvas(500,350,'white','Clocks')

Draw first clock, red, diameter 125, time 5pm, at (150,75):
clock1 = Layer()
clockface1 = Circle(125/2.0) # 125 is clockface diameter
clockface1.setFillColor('red')
clock1.add(clockface1)
minutehand1 = Path(Point(0,0), Point(0,-125*.48))
hourhand1 = Path(Point(0,0), Point(0,-125*.35))
hourhand1.rotate(5*30.0) # 5 o'clock * 30 degrees/hour
clock1.add(minutehand1)
clock1.add(hourhand1)
clock1.moveTo(150,75)
wall.add(clock1)

Draw second clock, lightblue, diameter 200, time 8pm, at (350, 150):
clock2 = Layer()
clockface2 = Circle(200/2.0) # 200 is clockface diameter
clockface2.setFillColor('lightblue')
clock2.add(clockface2)
minutehand2 = Path(Point(0,0), Point(0,-200*.48))
hourhand2 = Path(Point(0,0), Point(0,-200*.35))
hourhand2.rotate(8*30.0) # 8 o'clock * 30 degrees/hour
clock2.add(minutehand2)
clock2.add(hourhand2)
clock2.moveTo(350,150)
wall.add(clock2)

 3

 Part (a) [12 points]

Capture the repeated pattern in the code above by creating a function, called drawClock, that can
be used to draw clocks on the Canvas, such as those shown above. In part (b) on the next page, you
will write three invocations of your drawClock function to draw the two clocks and then add a
third in part (c).

Here, in part (a), you must define the drawClock function. Your drawClock function should
take 6 parameters that provide the following information: the Canvas object to draw the clock on, the
x-coordinate on the Canvas where the center of the clock should be placed, the y-coordinate on the
Canvas where the center of the clock should be placed, the diameter of the clock, the color of the
clock face, and the time the clock should display (an integer between 1 and 12).

def drawClock():

 4

Part (b) [6 points]

Write the two invocations of your drawClock function that will replace all of the code on page 2
except for the first two lines.

Part (c) [3 points]

Below, write one new invocation of your drawClock function that will additionally place a yellow
clock of diameter 175 showing 11pm with its center at (125, 250) as shown in this image:

Write your invocation here:

 5

Problem 2: Duplicate Removal [12 points]

Define a function named removeDuplicates that takes a list as its parameter and returns a new
list consisting of all elements in the original list but without any duplicate elements. For example:

removeDuplicates([1, 2, 2, 3, 2, 3, 1])
returns [1, 2, 3]

removeDuplicates(['john', 'george', 'paul', 'ringo', 'john',
 'paul', 'jones', 'rhys', 'price', 'jones'])
returns ['john', 'george', 'paul', 'ringo', 'jones', 'rhys', 'price']

removeDuplicates(range(0,10,2)+range(0,10,3))
returns [0, 2, 4, 6, 8, 3, 9]

The order of elements in your returned list does not matter. For example, it is fine for your function
to return [2, 3, 1] for the first example above.

 6

Problem 3: Understanding Conditionals [16 points]

Fill in the table below to indicate the printed output for various values of the input variable x.

x = int(raw_input("Enter an integer x: "))
answer = ''
if x >= 60:
 answer = answer + 'A'
 if x < 75:
 answer = answer + 'B'
 elif x > 90:
 answer = answer + 'C'
 else:
 answer = answer + 'D'
elif x >= 50:
 answer = answer + 'E'
else:
 answer = answer + 'F'
if x < 35:
 answer = answer + 'G'
else:
 answer = answer + 'H'
 answer = answer + 'I'
print(answer)

x printed output

25

35

45

55

65

75

85

95

 7

Problem 4: Random Pairs [12 points]

In the Python random module, there is a function named random.choice that takes a list
and returns a randomly selected element from that list. For example, here are some sample
invocations:

myList = [8, 2, 7, 5]
random.choice(myList) returns 7
random.choice(myList) returns 8
random.choice(myList) returns 5
random.choice(myList) returns 5
random.choice(myList) returns 8

Write a function called randomPair that, given a list with at least two different elements,
returns a pair (i.e., a tuple with two elements) of two distinct randomly selected elements from
the given list.
randomPair should not modify the input list in any way. Here are some sample invocations of
randomPair:

randomPair(myList) returns (5, 2)
randomPair(myList) returns (7, 8)
randomPair(myList) returns (2, 7)
randomPair(myList) returns (8, 5)
randomPair(myList) returns (7, 8)

Note that randomPair(myList) should never return (8,8) or any pair that contains two of
the same element.

In your definition, employ this strategy: randomly choose the first element of the pair from the
list, and then repeatedly randomly choose a second element from the list until that second
element is different from the first element. You should not invoke any function other than
random.choice

def randomPair():

 8

Problem 5: Understanding Loops & Sequences [39 points]

Part (a) [12 points]

Define a function named includesNumberBetween that takes three parameters:
 (1) a low number
 (2) a high number
 (3) a list of numbers
It returns True if one of the numbers in the list is between the low number and the high number
(inclusive). Otherwise it returns False.

includesNumberBetween(18, 40, [15, 7, 78, 63, 42]) returns False
includesNumberBetween(40, 42, [15, 7, 78, 63, 42]) returns True
includesNumberBetween(20, 100, [15, 7, 78, 63, 42]) returns True
includesNumberBetween(65, 75, [15, 7, 78, 63, 42]) returns False
includesNumberBetween(70, 80, [15, 7, 78, 63, 42]) returns True
includesNumberBetween(15, 20, [15, 7, 78, 63, 42]) returns True

Define your function here:

 9

Part (b) [15 points]

Consider the following functions loopy1 and test_loopy1:

def loopy1 (nums):
 i = 0
 while i < (len(nums) - 2):
 nums[i] = nums[i] + nums.pop()
 i = i + 1

def test_loopy1():
 testList = [7, 4, 9, 2, 3]
 loopy1(testList)
 print(str(testList))

What is printed by the invocation test_loopy1()? To receive full credit, you must show
your work, which can include iteration tables and memory diagrams.

 10

Part (c) [12 points]

Below is a function loopy2:

def loopy2 (width, height, string):
 for y in range(height):
 line = ''
 for x in range(width):
 line = line + string[(y*width + x)%len(string)]
 print(line)

What is printed by the invocation loopy2(5,3,'code')?

This is the end of the exam.

