
Enumerations and Vectors

CS111 Lecture 18

Thursday, April 6, 2000

Enumeration Contract

A Java Enumeration is an abstract collection of Objects that can be
enumerated one at a time until there are no more:

 public interface java.util.Enumeration {

 public abstract boolean hasMoreElements();

Returns true if there are more elements in this

enumeration, and false otherwise.

 public abstract Object nextElement();

Returns the next Object in this enumeration.

(Note: you must cast the result if it should have

a more specific type.)
}

Interfaces

In Java, an interface is a “pure” contract that has no
implementation. A class can only be a subclass of one other
class, but it can implement arbitrarily many interfaces. E.g

 public class OrderedSet

 extends SetImpl

 implements Sequence, Set

Listing the Words in a File
// An applet that prints out the words of a file in the order of their appearance followed by
// A word count. Punctuation marks are considered to be words.
public class Words extends TextApplet {

 public void run () {
 String filename = WordEnumeration.chooseFilename();
 // State variables for iteration
 WordEnumeration words = WordEnumeration.fileToWords(filename);
 int count = 0;
 println("Processing file " + filename + "\n");
 println("Here are the words in the file in order of appearance:");
 println("---");
 while (words.hasMoreElements()) {
 println(words.nextElement());
 count = count + 1; // Could also say count++
 }
 println("---");
 println("The file has " + count + " words");
 }
}

Vectors: What and Why?

In Java a Vector is an extensible indexed collection of objects.

• As with arrays access time to Vector slots is constant time.

• Unlike with arrays, the size of a Vector can change dynamically
as objects are inserted or removed.

• As with ObjectList, every Vector element must be an Object. This
implies lots of casting!

• We draw Vector instances just like arrays, except with the title
“Vector” at the top.

Vector Contract
Below is a contract for a subset of Java’s Vector class.

See the JDK 1.0.2 API for details.

public class java.util.Vector

{

 // Constructors

 public Vector();

 // Instance Methods

 public final void addElement(Object obj);

 public final Object elementAt(int index);

 public final Enumeration elements();

 public final void insertElementAt(Object obj, int index);

 public final void removeElementAt(int index);

 public final void setElementAt(Object obj, int index);

 public final int size();

}

Listing the Distinct Words in a File
// An applet that prints the number of distinct words in the file,
// followed by a list of distinct words in dictionary order.
public class WordsDistinctSorted extends TextApplet {

 public void run () {
 String filename = WordEnumeration.chooseFilename();
 println("Processing file " + filename + "\n");
 // State variables for iteration
 WordEnumeration words = WordEnumeration.fileToWords(filename);

 Vector set = new Vector(); // set contains sorted sequence of strings seen so far.

 . . . Main loop goes here. See next slide . . .

 // Print results

 println("There are " + set.size() + " distinct words in the file:");
 println("---");
 Enumeration distinct = set.elements();
 while (distinct.hasMoreElements()) {
 println(distinct.nextElement());
 }
 println("---");
 }
}

Insertion Loop for Distinct Words Program

 // This code belongs in the context of the previous slide.
 // Insert all words into the set
 while (words.hasMoreElements()) {
 String word = (String) words.nextElement();
 int index = StringVectorOps.binarySearchSorted(word, set);
 // Only insert word if its not already in set.
 if ((index == set.size())
 || (! (word.equals(set.elementAt(index))))) {
 set.insertElementAt(word, index);
 }
 }

Linear Search of an Unsorted Vector of Strings

// If x is in vec, returns the least index at which vec appears.
// (There may be more than one.)
// If x is not in vec, returns the index at which x should be inserted.
// Use linear left-to-right search to find the index.
public static int linearSearchUnsorted(Object x, Vector vec) {
 for (int i = 0; i < vec.size(); i++) {
 if (x.equals(vec.elementAt(i))) {// Cast unnecessary for .equals()
 return i;
 }
 }
 // Only reach this point if x is not equal to any element in vec,
 // in which case insertion point is at end of vec.
 return vec.size();
}

Linear Search of a Sorted Vector of Strings

// Assume that string in vec are sorted from low to high
// according to the string compareTo() method.
// If x is in vec, returns the least index at which x appears.
// (There may be more than one.)
// If x is not in vec, returns the index at which x should be
// inserted in vec in sorted order.
// Use linear left-to-right search to find the index.
public static int linearSearchSorted(String x, Vector vec) {
 for (int i = 0; i < vec.size(); i++) {
 if (x.compareTo((String) vec.elementAt(i)) <= 0) {
 return i;
 }
 }
 // Only reach this point if x is greater than all other elements
 // in which case insertion point is at end of vec.
 return vec.size();
}

Binary Search of a Sorted Vector of Strings
// Assume that objects in vec are sorted from low to high
// according to the string compareTo() method.
// If x is in vec, returns an index at which vec appears.
// (There may be more than one.)
// If x is not in vec, returns the index at which x should be
// inserted in vec in sorted order.
// Use binary search to find the index.
public static int binarySearch(String x, Vector vec) {
 int lo = 0;
 int hi = vec.size() - 1;
 // Loop invariants:
 // * All elements at indices < lo are less than x.
 // * All elements at indices > hi are greater than x.
 . . . Main loop goes here (see next slide) . . .
 // lo must be hi + 1 at this point.
 // By invariants, insertion point must be lo.
 return lo;
}

Binary Search: Main Loop

 // This code belongs in the context of the previous slide.
while (lo <= hi) {

int mid = (lo + hi) / 2;
String midElt = (String) vec.elementAt(mid);
int comp = x.compareTo(midElt);
if (comp == 0) {

return mid;
} else if (comp < 0) {

hi = mid - 1;
} else { // (comp > 0)

lo = mid + 1;
}

}

