
1

CS112 Scientific Computation
Department of Computer Science
Wellesley College

After the storm...
Recap of loops & functions

Program design

2

Simulating population growth
Goal: define a function that generates a figure with curves for
different rates of population growth over multiple generations,
using the logistic growth model for population growth:

pt+1 = r * pt * (K – pt)/K

pt: current population
pt+1: population in the next generation
r: growth rate
K: carrying capacity

2

3

Guidelines & tips
Define a function named popGrowth with four inputs:
- vector of growth rates to simulate (default [1.2 1.4 1.6 1.8 2.0])
- initial population (default 2)
- number of generations (default 25)
- carrying capacity (default 1000)

For each growth rate:
- create a vector to store the populations for each generation and

store the initial population in the first location of the vector
- for each new generation, apply the formula to calculate the new

population size and store it in the vector
- plot the populations for this growth rate

New: add input maxPop, replace inner for loop with a while loop that
determines the number of generations needed to exceed maxPop

4

Program complexity

Designing large scale programs
is fraught with peril

P

P1 P2 P3 P4

S4S3S2S1

S

Divide, conquer and glue
is a simple but powerful
design strategy that
helps us avoid danger

3

5

Tools of the trade
We have used functions and scripts to help divide problems

into manageable chunks:

lineFit, poleVault
rotate, spin
displayGrid, virus

What kinds of subtasks are performed by these individual
functions in these programs, and ...

... why did we divide the programming task in this way?

6

Functions may…
Perform a general function that’s useful in

many contexts, e.g.

- use lineFit function for any linear regression
- use rotate function to rotate any figure

Apply or test other functions, e.g.
- poleVault tests the lineFit function

Hide details of tasks like plotting or
displaying data, e.g.

- displayGrid displays current state of the virus

4

7

Functions help to avoid repetitious code

Consider a function with the following structure

function outputs = myFunction (inputs)
statements a
statements b
statements c
statements b
statements d
statements b

Encapsulate repetitious statements in a separate
function

similar statements

8

Test, test, test!

“If there is no way to check
the output of your program, in
using that program, you have
left the realm of scientific
computation and entered that
of mysticism, numerology, and
the occult.”

Daniel Kaplan

Introduction to Scientific
Computation and Programming

5

9

General tips on testing
Test and debug each function on

its own

Create test data for simple cases
where expected intermediate
results and final answer can be
easily verified

Be thorough! Construct examples
to test all cases considered by
your program

10

Functions versus scripts
Functions usually have one or more inputs that provide data

or control aspects, and one or more outputs

Scripts perform a specific set of actions and do not have
inputs or outputs

Execution of a function creates a private, temporary
environment of variables

Scripts have access to variables defined in the environment
within which the script is called*

* Danger Will Robinson!!!

6

11GUIs 11

Subfunctions

An M-file can only contain one function
that can be called from the Command
Window or from another code file

This function must be placed at the
beginning of the file and its name
must be the same as the file name

Other subfunctions can be defined in an
M-File, but can only be called by
functions in the same M-File

12GUIs 12

Subfunctions for a ferris wheel movie
function ferrisWheel
% displays an animation of a rotating ferris wheel
for frame = 1:36

drawBase;
hold on
spokeCoords = drawWheel(10*frame);
drawCars(spokeCoords);
hold off

end
function drawBase
% draw the blue base of the ferris wheel
function spokeCoords = drawWheel (angle)
% draw the black spokes at the input angle and return
% the coordinates of the endpoints of the spokes
function drawCars (spokeCoords)
% draw a colored car at each location in spokeCoords

