
1

CS112	Scientific	Computation
Department	of	Computer	Science
Wellesley	College

Loops
Iteration	with	for loops

2

Iteration

We	often	want	to	repeat an	operation	multiple	times	
or	step	through	a	collection	of	values	and	perform
the	same	computation	for	each	value

For	example:
- drawing	the	olympic symbol
- cleaning	up	the	depth	data
- recognizing	faces



2

3

Repetitive	computations

Repetitive	computations	can	be	implemented	with	
a	for statement:

for variable	name = vector	of	values
code	statements	to	repeat

end

For	example:

for count	=	1:5
disp('Peter	Piper	picked	a	peck	of	pickled	peppers');

end

4

Let’s	turn	peterPiper into	a	function
function peterPiper
%	peterPiper
%	repeats	a	tongue	twister	5	times
for	count	=	1:5
disp('Peter	Piper	picked	a	peck	of	pickled	peppers');

end

Modify	peterPiper so	the	number	of	repeats	is	an	input:

>>	peterPiper(4)
Peter	Piper	picked	a	peck	of	pickled	peppers
Peter	Piper	picked	a	peck	of	pickled	peppers
Peter	Piper	picked	a	peck	of	pickled	peppers
Peter	Piper	picked	a	peck	of	pickled	peppers
>>



3

5

Further	modifications	to	peterPiper

Modify	peterPiper function	further	so	the	value	of	the	count	
variable	is	incorporated	into	the	printout:

>>	peterPiper(3)
Peter	Piper	picked	1	pecks	of	pickled	peppers
Peter	Piper	picked	2	pecks	of	pickled	peppers
Peter	Piper	picked	3	pecks	of	pickled	peppers

hmmm?

6

Creating	a	bull’s	eye	display
function makeBullseye
%	creates	a	display	of	10	blue	concentric	circles

%	create	50	evenly	spaced	angles	around	a	circle
angles	=	linspace(0,	2*pi,	50);
hold	on
%	plot	10	circles	of	increasing	radius
for	radius	=	10:10:100
plot(radius*cos(angles),	radius*sin(angles));

end
axis	equal
hold	off Boring…



4

7

Variety	is	the	spice	of	life
function makeBullseye2
%	creates	a	display	of	10	multi-colored	concentric	circles

%	create	50	evenly	spaced	angles	around	a	circle
angles	=	linspace(0,	2*pi,	50);
%	create	a	vector	of	different	colors	from	a	string
colors	=	'bgrcmybgrc';
hold	on
%	plot	10	circles	of	increasing	radius	and	changing	color
index	=	1;
for radius	=	10:10:100
plot(radius*cos(angles),	radius*sin(angles),	colors(index));
index	=	index	+	1;

end
axis	equal
hold	off

8

Better	still?
How	about	a	real	Bull’s	eye	pattern	
with	the	colors	filled	in?

We	can	use	the	fill function	
instead	of	plot to	create	a	
Bull’s	eye	like	this	



5

9

Bull’s	eye!
function makeBullseye3
%	creates	a	display	of	multi-colored	concentric	circles

%	create	50	evenly	spaced	angles	around	a	circle
angles	=	linspace(0,	2*pi,	50);
%	create	a	vector	of	different	colors	from	a	string
colors	=	'bgrcmybgrc';
hold	on
%	plot	10	circles	of	increasing	radius	and	changing	color
for index	=	10:-1:1
fill(10*index*cos(angles),	10*index*sin(angles),	colors(index));

end
axis	equal
hold	off

10

Breaking	out
Sometimes	we’d	like	to	immediately	exit	a	loopwithout	
stepping	through	all	values	of	the	control	variable	

We	can	do	this	with	a	break statement:

num =	1;
for i =	1:100

num =	2	*	num;
if (num >	100)

break;
else

disp(['num' num2str(num)])
end

end



6

11

collectGoldenRatios
Write	a	function	named	collectGoldenRatios:

(1)	one	input:	maximum	number	of	times	to	prompt	the	user	
for	hand	and	forearm	values

(2)	“for	loop”	that	prompts	the	user	for	hand	and	forearm	values,	
for	input	number	of	times,	and	stores	the	ratios	in	a	vector

(3)	stop	the	loop	if	the	user	enters	a	0	for	the	hand	length

(4)	print	message	at	the	end	with	number	of	measurements	
entered

12

Tip	on	debugging	loops

%	calculate	10!	and	print	the	result

factorial	=	0;
for	num =	10:1:1
disp('inside	loop');
factorial	=	factorial	*	num;
disp(['num:	'	num2str(num)	'factorial	:	'	num2str(factorial)]

end
disp(['10!	=	' num2str(factorial)]);

Print	statements	
are	your	friends!


