Remember from last time...

We refer to individual locations of a matrix using two indices that specify the row and column

\[
\text{nums} = \begin{bmatrix}
1 & 2 & 3 & 4 & 5; & 6 & 7 & 8 & 9 & 10; & \cdots \\
11 & 12 & 13 & 0 & 15; & 16 & 17 & 18 & 19 & 20
\end{bmatrix};
\]

\[
\text{val} = \text{nums}(2, 3);
\]

\[
\text{nums}(3, 4) = 14;
\]
Indexing with colon notation

To refer to an entire column of a matrix, provide : as the first index and the column number as the second index

\[\text{nums}(:, 3) \]

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9 & 10 \\
11 & 12 & 13 & 14 & 15 \\
16 & 17 & 18 & 19 & 20 \\
\end{array}
\]

To refer to an entire row of a matrix, provide : as the second index and the row number as the first index

\[\text{nums}(2, :) \]

\[
\begin{array}{cccc}
6 & 7 & 8 & 9 & 10 \\
\end{array}
\]

Analyzing table data

<table>
<thead>
<tr>
<th>level</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>advanced</td>
<td>7</td>
<td>9</td>
<td>15</td>
<td>18</td>
<td>20</td>
<td>24</td>
<td>29</td>
<td>35</td>
</tr>
<tr>
<td>proficient</td>
<td>17</td>
<td>15</td>
<td>18</td>
<td>27</td>
<td>24</td>
<td>27</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>needs improvement</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>30</td>
<td>31</td>
<td>29</td>
<td>28</td>
<td>24</td>
</tr>
<tr>
<td>failing</td>
<td>52</td>
<td>53</td>
<td>45</td>
<td>25</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 1. Statewide results for MCAS Test in Mathematics, Grade 10
Plotting trends in performance levels

We begin our analysis by plotting the data for each performance level over the 8 years

% create matrices that store data and years
results = [7 9 15 18 20 24 29 35; ...
 17 15 18 27 24 27 28 27; ...
 24 23 22 30 31 29 28 24; ...
 52 53 45 25 25 20 15 15];
years = [1998 1999 2000 2001 2002 2003 2004 2005];

Each row of the table corresponds to a performance level. How do we plot the resulting trend over the given years?

Plotting the data

% plot the data for each performance level vs. years
hold on
plot(years, results(1,:), 'b', 'LineWidth', 2);
plot(years, results(2,:), 'g', 'LineWidth', 2);
plot(years, results(3,:), 'c', 'LineWidth', 2);
plot(years, results(4,:), 'r', 'LineWidth', 2);
hold off

xlabel('year')
ylabel('percentage of students')
title('MCAS results')
legend('advanced', 'proficient', 'improve', 'failing');
Finally, ...

Suppose we want to print the change in results between 1998 and 2005 for each performance level...

How do we do this?

Printing changes in results

% print total change in results between 1998 and 2005

```
totalChange = results(:, end) - results(:, 1);

disp('Change in performance between 1998 and 2005:');
disp(['advanced: ' num2str(totalChange(1)) '%']);
disp(['proficient: ' num2str(totalChange(2)) '%']);
disp(['needs improvement: ' num2str(totalChange(3)) '%']);
disp(['failing: ' num2str(totalChange(4)) '%']);
```

Change in performance between 1998 and 2005:
advanced: 28%
proficient: 10%
needs improvement: 0%
failing: -37%
Time-out exercise

For each year, compute a *weighted sum* of the four percentages, using a weight of 1 for “advanced”, 2 for “proficient”, 3 for “needs improvement” and 4 for “failing”*

\[
\text{overallPerformance} = \text{Add a new row to the results matrix that stores these weighted sums}
\]

* The resulting sum can range from 100 (great!) to 400 (not so good…)

More indexing with colon notation

We can use colon notation to refer to a *range of indices* within a column or row of a matrix

\[
\begin{align*}
\text{nums}(1:3, 4) & \rightarrow \begin{bmatrix} 4 \\ 9 \\ 14 \end{bmatrix} \\
\text{nums}(3, 3:5) & \rightarrow \begin{bmatrix} 13 & 14 & 15 \end{bmatrix} \\
\text{nums}(2:3, 2:4) & \rightarrow \begin{bmatrix} 7 & 8 & 9 \\ 12 & 13 & 14 \end{bmatrix}
\end{align*}
\]
Conditional operations on matrices

A conditional expression can be applied to an entire matrix all at once producing a new matrix of the same size that contains logical values.

\[
\text{ages} = \begin{bmatrix} 13 & 52 & 19 & 21 \\ 18 & 47 & 23 & 15 \\ 60 & 38 & 16 & 12 \end{bmatrix}; \\
\text{teens} = (\text{ages} \geq 13) \& (\text{ages} \leq 19);
\]

```
ages = [13 52 19 21; 18 47 23 15; 60 38 16 12];
teens = (ages >= 13) & (ages <= 19);
```

Using logical vectors

```
>> ages(teens) = 0
>> ages =
   0   52    0    21
   0   47   23    0
   60   38    0   12
```

```
>> overTheHill = ages(ages>40)
>> overTheHill =
   60
   52
   47
```

```
Time-out exercise

Given the original ages matrix, write two statements that each assign the variable numAdults to the total number of age values that are 18 or over.

One statement should use `sum` and the other should use `length`.

Creating synthetic images

Using colon notation, we can create a synthetic image that contains patches of constant brightness.

```matlab
image = zeros(128, 128);
image(10:40, 50:80) = 1.0;
image(60:100, 80:115) = 0.8;
image(90:110, 30:100) = 0.4;
```

Copy rectangular regions of one image into another image.

```matlab
patch = image(60:110, 60:110);
newImage = zeros(128,128);
newImage(10:60, 10:60) = patch;
newImage(10:60, 70:120) = patch;
newImage(75:115, 40:80) = image(30:70, 60:100);
```
Let's make a quilt

Suppose we want to create the following image -
How do we plan the code?

We can begin by making a single patch:

Making the patch

First draw a picture of the pattern, with coordinates of key points and brightness values:

Then write the code...
Planning the full quilt

Again, draw a picture of the pattern first:

Then write the code...

```
% create the patch
patch = zeros(100, 100);
patch(26:75, 26:75) = 0.5;
patch(51:75, 51:75) = 1.0;

% assemble the quilt
quilt = 0.5 * ones(275, 275);
quilt(26:125, 26:125) = patch;
quilt(26:125, 151:250) = patch(:, 100:-1:1); % flip columns
quilt(151:250, 26:125) = patch(100:-1:1, :); % flip rows
quilt(151:250, 151:250) = patch(100:-1:1, 100:-1:1);

% display the quilt
imshow(quilt);
```