
1

CS112 Scientific Computation
Department of Computer Science
Wellesley College

Divide, conquer, glue
Program design

2

Play it again, Sam…
for i = 1:100 % bit of a kludge…
 disp('Play it once, Sam, for old times'' sake’);
 again = input('Play it again? (yes:1, no:0) ');
 if ~again
 break
 end
end

again = 1;
while again % much cleaner

 disp('Play it once, Sam, for old times'' sake’);
 again = input('Play it again? yes(1) or no(0): ');
end

2

3

The while statement

conditional expression

Yes

No

statements to repeat if true

 end

while conditional expression
 statements to repeat if conditional expression is true

end

code following end

4

Fibonacci numbers, or multiplying rabbits?

Fibonacci numbers first appear
around 500 B.C. in writings of a
Sanscrit grammarian named Pingala
who studied rhythm in language

Leonardo Fibonacci
studied these
numbers around 1200
in the context of
multiplying rabbits

•  In the first month, there’s
one newborn pair

•  Newborn pairs become fertile
in their second month

•  Each month, every fertile pair
begets a new pair

•  Rabbits never die
1 1 2 3 5 8 13 21 34 …

3

5

Finding first Fibonacci number > 100
fibo = [1 1];

while (fibo(end) < 100)
 fibo(end+1) = fibo(end) + fibo(end-1);

end
disp([‘first Fibonacci number > 100: ' num2str(fibo(end))]);

6

Structures
A structure can store multiple values of different types

 gold.name = 'gold';
 gold.type = 'metal';
 gold.symbol = 'Au';
 gold.atomNum = 79;
 gold.mbPoints = [1064 2856];
 gold.bohrmodel = goldPict;

name 'gold'

type 'metal'

symbol 'Au'

atomNum 79

mbPoints

bohrModel

1064 2856

structure
name

field
name

field
value

gold

4

7

Structures make sharing easy
function describeElement (element)
% shows the properties stored in the input element structure

disp(['name of element: ' element.name]);
disp(['type of element: ' element.type]);
disp(['atomic symbol: ' element.symbol]);
disp(['atomic number: ' num2str(element.atomNum)]);
disp(['melting point: ' num2str(element.mbPoints(1)) ...
 ' degrees Celcius']);
disp(['boiling point: ' num2str(element.mbPoints(2)) ...

 ' degrees Celcius']);
imshow(element.bohrModel);

8

Sharing structures
>> describeElement(gold)
name of element: gold
type of element: metal
atomic symbol: Au
atomic number: 79
melting point: 1064 degrees Celcius
boiling point: 2856 degrees Celcius
!!

name 'gold'

type 'metal'

symbol 'Au'

atomNum 79

mbPoints

bohrModel

1064 2856

gold

5

9

Program complexity

Designing large scale programs
is fraught with peril

P	

P1	

 P2	

 P3	

 P4	

S4	

S3	

S2	

S1	

S	

Divide, conquer and glue is
a simple but powerful
design strategy that helps
us avoid danger

10

Tools of the trade
We have used functions and scripts to help divide problems

into manageable chunks:

 lineFit, poleVault
 rotate, spin

 displayGrid, virus

What kinds of subtasks are performed by these individual

functions in these programs, and ...

... why did we divide the programming task in this way?

6

11

Our goal is ...

... to design programs that:

•  are free of errors
•  run efficiently
•  require no more memory than

necessary
•  are easy to understand and use
•  can be used in a variety of

situations
•  are easy to maintain and modify

if necessary

*... and to do all of this within time and budget

12

Functions may…
Perform a general function that is useful

in many contexts

 e.g. lineFit function can be used for any
linear regression

Apply or test other functions

 e.g. poleVault tests the lineFit function

Hide details of tasks like plotting or

displaying data

 e.g. displayGrid displays the current state
of the virus

7

13

Functions help to avoid repetitious code

Consider a function with the following structure

 function outputs = myFunction (inputs)
 statements a
 statements b

 statements c
 statements b

 statements d
 statements b

Encapsulate repetitious statements in a separate
function!

similar statements

14

Test, test, test!

“If there is no way to check
the output of your program, in
using that program, you have
left the realm of scientific
computation and entered that
of mysticism, numerology, and
the occult.”

 Daniel Kaplan

Introduction to Scientific
Computation and Programming

8

15

General tips on testing
Test and debug each function on

its own

Create test data for simple cases
where expected intermediate
results and final answer can be
easily verified

Be thorough! Construct examples
to test all cases considered by
your program

16

Functions versus scripts
Functions usually have one or more inputs that provide data

or control aspects, and one or more outputs

Scripts perform a specific set of actions and do not have
inputs or outputs

Execution of a function creates a private, temporary
environment of variables

Scripts have access to variables defined in the environment
within which the script is called*

* Danger Will Robinson!!!

