
1

CS112	Scientific	Computation
Department	of	Computer	Science
Wellesley	College

Divide,	conquer,	glue
Loops,	structures,	program	design

2

Simulating	population	growth
Goal:	define	a	function	that	generates	a	figure	with	curves	for	
different	rates	of	population	growth	over	multiple	generations,	
using	the	logistic	growth	model	for	population	growth:

pt+1	=	r	*	pt *	(K	– pt)/K

pt:		current	population
pt+1:		population	in	the	next	generation
r:		growth	rate
K:		carrying	capacity



2

3

Guidelines	&	tips
Define	a	function	named	popGrowth with	four	inputs:
- vector	of	growth	rates	to	simulate	

- (default	[1.2		1.4		1.6		1.8		2.0])
- initial	population	(default	2)
- number	of	generations	(default	25)
- carrying	capacity	(default	1000)

For	each	growth	rate:
- create	a	vector	to	store	the	population	for	each	generation,	
and	store	initial	population	in	the	first	location	of	the	vector

- for	each	new	generation,	apply	the	formula	to	calculate	the	
new	population	size	and	store	it	in	the	vector

- plot	the	populations	for	this	growth	rate

Add	figure	embellishments	at	the	end

4

function popGrowth	(rates,		generations,		initPop,		K)

if		(nargin	<	4)
K	=	1000;

end
if		(nargin	<	3)
initPop	=	2;

end
if		(nargin	<	2)
generations	=	25;

end
if		(nargin	<	1)
rates	=	[1.2		1.4		1.6		1.8		2.0];

end
.	.	.	

if		(nargin	==	3)
K	=	1000;

elseif		(nargin	==	2)
initPop	=	2;
K	=	1000;

elseif		(nargin	==	1)
generations	=	25;
initPop	=	2;
K	=	1000;

elseif		(nargin	==	0)
rates	=	[1.2		1.4		1.6		1.8		2.0];
generations	=	25;
initPop	=	2;
K	=	1000;

end
.	.	.

%	all	input	parameters	are	optional



3

5

%	for	each	growth	rate
for rate	=	rates
%	create	a	vector	to	store	population	for	each	generation
pops	=	zeros(1,	generations);
%	store	initial	population	in	the	first	location	of	vector
pops(1)	=	initPop;
%	for	each	new	generation
for gen	=	2:generations

%	apply	formula	to	calculate	new	population	size	...	
%		...	and	store	it	in	the	vector
pops(gen)	=	rate	*	pops(gen–1)	*	(K	– pops(gen–1))/K;

end
%	plot	the	populations	for	this	growth	rate
plot(pops,	'b')

end

6

Structures
A	structure can	store	multiple	values	of	different	types

gold.name	=	'gold';
gold.type	=	'metal';
gold.symbol	=	'Au';
gold.atomNum	=	79;
gold.mbPoints	=	[1064		2856];
gold.bohrmodel	=	goldPict;

name 'gold'

type 'metal'

symbol 'Au'

atomNum 79

mbPoints

bohrModel

1064					2856

structure
name

field
name

field
value

gold



4

7

Structures	make	sharing	easy
function	describeElement	(element)
%	shows	properties	stored	in	the	input	element	structure

disp(['name	of	element:	' element.name]);
disp(['type	of	element:	' element.type]);
disp(['atomic	symbol:	' element.symbol]);
disp(['atomic	number:	' num2str(element.atomNum)]);
disp(['melting	point:	' num2str(element.mbPoints(1))	...	

' degrees	Celcius' ]);
disp(['boiling	point:	' num2str(element.mbPoints(2))	...																		

' degrees	Celcius']);
imshow(element.bohrModel);

8

Sharing	structures
>>	describeElement(gold)
name	of	element:	gold
type	of	element:	metal
atomic	symbol:	Au
atomic	number:	79
melting	point:	1064	degrees	Celcius
boiling	point:	2856	degrees	Celcius

name 'gold'

type 'metal'

symbol 'Au'

atomNum 79

mbPoints

bohrModel

gold

1064					2856



5

for i	=	1:100 %	for	loop
disp('Play	it	once,	Sam,	for	old	times''	sake');
again	=	input('Play	it	again?	(yes:1,	no:0)	');
if (again	==	0)
break

end
end

again	=	1;
while (again	==	1) %	while	loop
disp('Play	it	once,	Sam,	for	old	times''	sake');
again	=	input('Play	it	again?	yes(1)	or	no(0):	');

end
9

Play	it	again,	Sam…

while conditional	expression
statements	to	repeat	if	conditional	
expression	is	true

end

function temp	=	getTemp	(allStars,	starName)
%	return	temperature	of	input	star
i	=	1;
while (~strcmp(allStars(i).name,	starName)	&	(i	<	length(allStars))

i	=	i	+	1;
end
temp	=	allStars(i).temp;

1																										2																											3																																															n

10

Vector	of	structures
name ‘Sun’

temp 5840
...

name ‘Alioth’

temp 9400
...

name ‘Spica’

temp 22400
...

name ‘Regulus’

temp 13260
...

...
stars

function printTemps	(allStars)
%	print	temperature	of	all	the	stars
for i	=	1:length(allStars)

disp([allStars(i).name		' ' num2str(allStars(i).temp)])
end



6

11

Program	complexity

Designing	large	scale	programs	is	
fraught	with	peril

P

P1 P2 P3 P4

S4S3S2S1

S

Divide,	conquer	&	glue	is	a	simple	
but	powerful	design	strategy	that	
helps	us	avoid	danger

12

Tools	of	the	trade
We	have	used	functions and	scripts to	help	divide	problems	
into	manageable	chunks:

lineFit,	poleVault
rotate,	spin
displayGrid,	virus

What	kinds	of	subtasks	are	performed	by	these	individual	
functions	in	these	programs,	and	...

...	why	did	we	divide	the	programming	task	in	this	way?



7

13

Functions	may…
Perform	a	general	function	that	is	useful	in	
many	contexts
•		lineFit function	can	be	used	for	any	

linear	regression
•		visualize displays	many	kinds	of	data			

Apply	or	test	other	functions
•		poleVault tests	the	lineFit function

Hide	details	of	tasks	like	plotting	or	
displaying	data
•		displayGrid displays	current	state	of	

the	virus

14

Functions	help	to	avoid	repetitious	code

Consider	a	function	with	the	following	structure

function outputs	=	myFunction	(inputs)
statements	a
statements	b
statements	c
statements	b
statements	d
statements	b

Encapsulate	repetitious	statements	in	a	separate	function

similar	statements



8

15

Test,	test,	test!
“If	there	is	no	way	to	check	the	output	of	your	program,	in	using	
that	program,	you	have	left	the	realm	of	scientific	computation	
and	entered	that	of	mysticism,	numerology,	and	the	occult.”

Daniel	Kaplan,	Introduction	to	Scientific	Computation	&	Programming	

Tips	on	testing:
• Test	&	debug	each	function	on	its	own
• Create	test	data	for	simple	cases	where	
expected	intermediate	results	and	final	
answer	can	be	easily	verified

• Be	thorough!		Construct	examples	to	
test	all	cases	considered	by	program

16

Functions	versus	scripts

Functions usually	have	one	or	more	inputs	that	provide	
data	or	control	aspects,	and	one	or	more	outputs

Scripts perform	a	specific	set	of	actions	and	do	not	have	
inputs	or	outputs

Execution	of	a	function creates	a	private,	temporary	
environment	of	variables

Scripts have	access	to	variables	defined	in	the	
environment	within	which	the	script	is	called*

*			 Danger	Will	Robinson!!!



9

17

Subfunctions

An	M-file	can	only	contain	one	function	
that	can	be	called	from	the	Command	
Window	or	from	another	code	file

This	function	must	be	placed	at	the	
beginning	of	the	file	and	its	name	
must	be	the	same	as	the	file	name

Other	subfunctions can	be	defined	in	an	
M-File,	but	can	only	be	called	by	
functions	in	the	same	M-File

18

Subfunctions	for	a	ferris	wheel	movie
function	ferrisWheel
%	displays	an	animation	of	a	rotating	ferris	wheel
for	frame	=	1:36
drawBase;
hold	on
spokeCoords	=	drawWheel(10*frame);
drawCars(spokeCoords);
pause(0.1),	hold	off

end
function	drawBase
%	draw	the	blue	base	of	the	ferris	wheel

function	spokeCoords	=	drawWheel	(angle)
%	draw	the	black	spokes	at	the	input	angle	and	return
%	the	coordinates	of	the	endpoints	of	the	spokes
function	drawCars	(spokeCoords)
%	draw	a	colored	car	at	each	location	in	spokeCoords


