Cold Coffee

Vectors and plotting

CS112 Scientific Computation
Department of Computer Science
Wellesley College

Cold, funny-tasting coffee

<table>
<thead>
<tr>
<th>Time(min)</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>93.5</td>
</tr>
<tr>
<td>1</td>
<td>90.6</td>
</tr>
<tr>
<td>2</td>
<td>87.7</td>
</tr>
<tr>
<td>3:30</td>
<td>83.9</td>
</tr>
<tr>
<td>7</td>
<td>76.6</td>
</tr>
<tr>
<td>10</td>
<td>71.3</td>
</tr>
<tr>
<td>18</td>
<td>61.5</td>
</tr>
<tr>
<td>26</td>
<td>65.8</td>
</tr>
<tr>
<td>34</td>
<td>49.2</td>
</tr>
<tr>
<td>52</td>
<td>41.9</td>
</tr>
<tr>
<td>113</td>
<td>29.1</td>
</tr>
<tr>
<td>166</td>
<td>25.5</td>
</tr>
<tr>
<td>191</td>
<td>25.0</td>
</tr>
</tbody>
</table>
Vectors

- A vector is an ordered collection of numbers

```
times = [0 1 2 3.5 7]
temps = [93.5 90.6 87.7 83.9 76.6]
```

Plotting data: Round 1

- Create a 2D graph with the plot function

```
times = [0 1 2 3.5 7]
temps = [93.5 90.6 87.7 83.9 76.6]
plot(times, temps)
```

```
vector of x coordinates

plot(times, temps)

vector of y coordinates
```
Computations on collections of data

- Perform the same arithmetic operation on each element of vector

```
>> times = [0 1 2 3.5 7]
```

```
times
0 1 2 3.5 7
```

```
>> times = 60 * times
```

```
times
0 60 120 210 420
```

Time-out exercise

- Write an assignment statement to convert temperature from Celcius to Fahrenheit

```
>> temps = [93.5 90.6 87.7 83.9 76.6]
```

```
temps
93.5 90.6 87.7 83.9 76.6
```

```
>> ...
```

```
temps
200.3 195.08 189.86 183.02 169.88
```

* Hint: $F = 32 + (9/5)C$
More vector magic

- Perform *element-by-element computations* on two vectors, e.g. average the two data samples*

```matlab
>> sample1 = [3.2 1.1 4.7 2.1 6.2]
>> sample2 = [3.0 1.2 4.4 2.4 6.1]
```

* Hint: How do you calculate the average of two single numbers `sample1` and `sample2`?

```matlab
    sample1 3.2 1.1 4.7 2.1 6.2
    sample2 3.0 1.2 4.4 2.4 6.1
```

The envelope please

- Element-by-element average:

```matlab
>> sample1 = [3.2 1.1 4.7 2.1 6.2]
>> sample2 = [3.0 1.2 4.4 2.4 6.1]
>> average = (sample1 + sample2) / 2
```

```matlab
    sample1 3.2 1.1 4.7 2.1 6.2
    sample2 3.0 1.2 4.4 2.4 6.1
    average 3.1 1.15 4.55 2.25 6.15
```
Let’s try that one again

- Perform element-by-element computations on two vectors, e.g. multiply corresponding values in the two data samples*

```
>> sample1 = [3.2 1.1 4.7 2.1 6.2]
>> sample2 = [3.0 1.2 4.4 2.4 6.1]
```

```
sample1 3.2 1.1 4.7 2.1 6.2
sample2 3.0 1.2 4.4 2.4 6.1
```

* oops...

Still more magic

- Compute a single value from the contents of a vector

```
>> sample1 = [3.2 1.1 4.7 2.1 6.2]
```

```
sample1 3.2 1.1 4.7 2.1 6.2
```

```
>> totalSum = sum(sample1)
>> totalProd = prod(sample1)
>> sampleSize = length(sample1)
>> minValue = min(sample1)
>> maxvalue = max(sample1)
>> avgValue = mean(sample1)
```
Creating sequences

- Often you will want to create a sequence of evenly spaced numbers*

- Use **colon notation**

 \[\text{nums} = 1:2:9 \]

* Trust me, you really will want to do this someday!

Creating evenly spaced sequences

- Use the **linspace** function:

 \[\text{linspace(start, end, num)} \]

 to create a vector of `num` evenly spaced numbers from `start` to `end`

 \[\text{nums} = \text{linspace}(0, 10, 5) \]

* Write an assignment statement that stores a sequence of 5000 evenly spaced numbers from 1 to 1000
Plotting data: Round 2

- Adjust the appearance of lines and markers with a third input to the `plot` function:

  ```matlab
  plot(times, temps, 'g--*');
  ```

- Third input is a string of 1 to 4 characters in single quotes:
 - color: b g r c m y k w
 - marker: . o x + * s d v ^ < > p h
 - linestyle: - : -. --

- Add text labels:
  ```matlab
  xlabel('Time, minutes')
  ylabel('Temperature, Celcius')
  title('Cooling a Cup of Coffee')
  ```

Newton’s Law of Cooling

- An object’s rate of cooling depends on the difference between object’s temperature and ambient temperature

- Temperature decreases exponentially over time

- According to Newton:

  ```matlab
  T(t) = T_{env} + (T(0) - T_{env})e^{-kt}
  ```

where

- $T(t)$ is object temperature at time t
- $T(0)$ is initial temperature of object
- T_{env} is environment temperature
- k depends on material (for coffee $k \approx 0.0426$)
Coffee break

% coffee.m
% compares the direct measurement of cooling of coffee with
% the cooling rate predicted by Newton's Law of Cooling

timeData = [0 1 2 3.5 7 10 18 34 52 113 166 191];
tempData = [93.5 90.6 87.7 83.9 76.6 71.3 61.5 54.8 ... 49.2 41.0 29.1 25.5 25.0];
plot(timeData, tempData, 'b-*')
xlabel('Time, minutes')
ylabel('Temperature, degrees Celcius')
title('Cooling a Cup of Coffee')
timeSamples = 0:5:200;
tempLaw = 24.5 + 69 * exp(-0.0426 * timeSamples);
hold on
plot(timeSamples, tempLaw, 'g--o')
hold off

Ta Da!
Exercise: Center of Mass

% coordinates and masses of particles
xcoords = [1 7 6 8 3 5 9 2 8 6 2 4 1];
ycoords = [8 3 7 5 9 1 3 6 8 8 2 3 4];
masses = [11 8 10 4 5 11 6 7 12 8 9 6 5];
% calculate the center of mass of the particles
xcenter =
ycenter =
% print center of mass coordinates using disp