CS332 Visual Processing in Computer and Biological Vision Systems

Introduction to MATLAB

MATLAB is an extensive technical computing environment with advanced graphics and visualization tools and a rich high-level programming language. This document introduces aspects of MATLAB that will be most useful for working with vision software in the course CS332 Visual Processing in Computer and Biological Vision Systems. To learn more about MATLAB, you can browse the extensive online help facility or peruse the books and documents available in the CS332 library in SCI E125.

At Wellesley, MATLAB 7.0, together with some useful toolboxes that include the Image Processing Toolbox, is available on the public Macs and PCs, and on the CS Department's Linux workstations. The MATLAB software is key-served, so there are a limited number of copies that can be used at one time.
Contents

Starting MATLAB

1
Variables, arrays and matrices

2

zeros and ones

4

colon notation

4

array arithmetic and matrix operations

6

other useful MATLAB functions: sum, min, max, linspace, find
7
M-Files, scripts and directories

9

Using the help system

10

Conditionals and loops

10
Aborting a computation and Command Window shortcuts

12
Managing variables and memory space

12
Defining new functions

13

using help to obtain information about user-defined functions

adding user input and output to function definitions

15

break and return statements

15
Types of numbers

15
2D and 3D plotting

16
Working with images

17
Starting MATLAB

To start MATLAB on a Linux workstation, enter the following command in a Unix shell window:

matlab &

The section of this document entitled, “M-Files, scripts and directories” describes how to access course materials when working directly on the Linux machines.

To start MATLAB on a public Mac, double-click on the MATLAB 7.0.4 icon inside the Applications:MATLAB704 folder. Course materials, such as images and code files, can be downloaded to the Mac from the ~cs332/download directory on puma using the Fetch program. When using Fetch, connect to puma.wellesley.edu using SFTP. MATLAB code files, which have a file extension of .m, may be listed on the Macs with a Mathematica icon. This does not affect their use within the MATLAB system.
Finally, to start MATLAB on a public PC, first select All Programs>Academic Software>MATLAB 7.0.4 and then the final MATLAB 7.0.4 icon. Course materials can be downloaded to a PC using the WinSCP program.

When you start MATLAB, a large window appears (the MATLAB desktop) that contains smaller windows that include a Command Window, Command History, Current Directory, and Workspace window (the latter two windows are shown overlaid and can be selected with tabs). Near the top of the main MATLAB window is a pull-down menu with a text field labeled Current Directory. On a Linux machine, the initial current directory is the directory that you were connected to when executing the matlab & command. The initial current directory is Applications:MATLAB704 on the Macs and C:\Program Files\MATLAB704\work on the PCs.

Unlike languages such as Java and C, MATLAB is an interactive programming environment, in which the user types single commands at a prompt in the Command Window and the commands are executed immediately. The Command History window maintains a list of all of the commands entered in the Command Window during the current session. Double-clicking on any command in the Command History window evaluates this command again. The contents of the current directory are listed in the Current Directory window in the upper left region of the MATLAB display. The Workspace window, which can be selected with a tab, lists the name, value and type of all variables currently defined in the MATLAB workspace. The Desktop menu at the top of the main MATLAB window can be used to change the selection of which windows appear on the display.

Variables, arrays and matrices

When the MATLAB interpreter is waiting for a command from the user, the command prompt >> appears in the Command Window. Try entering the following commands that create some variables and assign these variables to values. The printout also shows the MATLAB response:

>> format compact

% removes extra vertical space from MATLAB printout

>> a = 10

a =

% MATLAB prints the value of each expression
 10

>> b = [1 2 3]

b =

 1 2 3

>> c = [4 5 6; 7 8 9]

c =

 4 5 6

 7 8 9

>> d = [-1 0; 6 -7]

d =

 -1 0

 6 -7

>> e = [c d];

% a semi-colon at the end of a statement suppresses
>> e

% the printout of its value
e =

 4 5
6 -1 0

 7 8
9 6 -7

>>

MATLAB was originally designed to work efficiently with large matrices of numbers, which are common in many science and engineering applications. The name MATLAB is derived from MATrix LABoratory. A matrix is essentially a two-dimensional array of numbers, although operations on matrices such as multiplication follow certain mathematical rules. A matrix with M rows and N columns is referred to as an MxN matrix. In the above examples, the first variable, a, is assigned to a single scalar value that is stored in a 1x1 matrix. The variable b is assigned to a row vector of three elements that are arranged horizontally. b is represented as a 1x3 matrix. You can think of b as a one-dimensional array. Brackets are used to enter the contents of a matrix, but these brackets are not shown when the value is printed.
The variable c is assigned to a 2x3 matrix that you can think of as a two-dimensional array. In the assignment statement, the elements within each row are separated by spaces and the contents of the two rows are separated by a semi-colon. You can create a column vector in which the elements are arranged vertically, by placing semi-colons between the successive elements, as in the following example:

>> f = [1; 2; 3]

f =

 1

 2

 3

>>

The assignment of the variable e illustrates that new matrices can be formed out of existing ones, by concatenating the parts. This assignment statement is also terminated by a semi-colon, which suppresses the printout of the returned value. The value of a variable can be printed at any time by typing the name of the variable at the command prompt.

The built-in size function returns the dimensions of a matrix:

>> size(b)

% returns a vector containing the two dimensions, 1x3
ans =

 1 3

>> size(e)

ans =

 2 5

>> size(e,1)
% returns the first dimension

ans =

 2

>> size(e,2)
% returns the second dimension

ans =

 5

>> [rows,cols] = size(e)
% assigns dimensions to separate variables

rows =

 2

cols =

 3

>>

When a value is returned, but not assigned to an explicit variable name, the value is assigned to a default variable named ans.

In the remainder of this document, the term array is used to refer to a MATLAB matrix. A matrix with one row (i.e. a 1xn matrix) is referred to as a one-dimensional (1D) array. Images are stored in two-dimensional (2D) or three-dimensional (3D) arrays.

The elements of a 1D array can be accessed by specifying a single index in parentheses, while the elements of a 2D array can be accessed by placing two indices inside parentheses, separated by commas, as shown in the following examples:

>> b(2)

ans =

% indices begin with 1 (not with 0, as in Java and C)

 2

>> d(2,2)

ans =

 -7

>> d(1,2)

ans =

 0

>> d(2,2) = 10
% assigning new contents to an array location
d =

 -1 0

 6 10

>> d(4,4) = 3

d =

 -1 0 0 0

 6 10 0 0

 0 0 0 0

 0 0 0 3

>>

The last example shows that if a value is assigned to an array location that is outside the current bounds of the array, MATLAB automatically expands the array, padding it with zeros in locations where a value is not specified. When expanding the array, the old contents are copied to the new array, so this is not an efficient operation if performed many times.

zeros and ones
When the desired size of an array is known in advance, it is best to create the array initially using the functions zeros or ones, as shown in the following examples:

>> image1 = zeros(3,4)

% create a 3x4 array of zeros

image1 =

 0 0 0 0

 0 0 0 0

 0 0 0 0

>> image2 = ones(3,3)

% create a 3x3 array of ones
image2 =

 1 1 1

 1 1 1

 1 1 1

>> image3 = 5*ones(2,3)

% all array elements are scaled by 5

image3 =

 5 5 5

 5 5 5

>> image1D = 2*ones(1,6)

% to create a 1D array of zeros or ones

image1D =

% you still need to specify two dimensions

 2 2 2 2 2 2

>>
The zeros and ones functions can also be used to create 3D arrays. This is illustrated in the following example, which also shows how to access the dimensions and elements of a 3D array:

>> image3D = zeros(10,10,3);

>> [xdim ydim zdim] = size(image3D)

xdim =

 10

ydim =

 10

zdim =

 3

>> image3D(3,6,2) = 100;

>>
colon notation

It is often desirable to create a range of equally spaced numbers or access a range of indices in an array all at once. A range of numbers can be specified using colon notation. The expression a:b denotes a sequence of consecutive numbers from a to b, incrementing by 1. The expression a:b:c denotes a sequence of numbers from a to c, changing by b. In the following examples, some sample ranges of numbers are placed in 1D arrays:

>> g = [2:6]

g =

 2 3 4 5 6

>> h = [3:2:11]

h =

 3 5 7 9 11

>> k = [2:-1:-3]

k =

 2 1 0 -1 -2 -3

>> m = [0.2:0.4:2.2]

m =

 0.2000 0.60000 1.00000 1.40000 1.80000 2.20000

>>

Colon notation can be used to specify a range of indices for an array. Inside an array reference, a single colon by itself specifies an entire row or column. The keyword end inside an array reference specifies the upper limit of a particular dimension. The following examples illustrate these concepts:

>> e

e =

 4 5 6 -1 0

 7 8 9 6 -7

>> e(1,2:4)

ans =

% row 1, column indices 2 through 4
 5 6 -1

>> e(1:2,4:5)

ans =

% rows 1 and 2, columns 4 and 5

 -1 0

 6 -7

>> e(:,2)

ans =

% all rows in column 2

 5

 8

>> e(2,:)

ans =

% all columns in row 2

 7 8 9 6 -7

>> e(1,3:end)

ans =

% row 1, from column 3 to the end

 6 -1 0

 9 6 -7

>> e(:,3) = 0

% assign all rows in column 3 to zero

e =

 4 5 0 -1 0

 7 8 0 6 -7
>>

The contents of one array can be copied into another, using colon notation to specify regions of the arrays:

>> im1 = zeros(5,5)

im1 =

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

>> im2 = ones(3,3)

im2 =

 1 1 1

 1 1 1

 1 1 1

>> im1(2:4,3:5) = im2

% copy all of im2 into im1, starting at row 2,
im1 =

% column 1 of im1
 0 0 0 0 0

 0 0 1 1 1

 0 0 1 1 1

 0 0 1 1 1

 0 0 0 0 0

>> im1(4:5,1:2) = im2(1:2,1:2)
% copy a subregion of im2 into im1
im1 =

 0 0 0 0 0

 0 0 1 1 1

 0 0 1 1 1

 1 1 1 1 1

 1 1 0 0 0

>> subimage = im1(2:4,1:3)

% create a separate array that is a

subimage =

% subregion of im1

 0 0 1

 0 0 1

 1 1 0

>>
array arithmetic and matrix operations

If two arrays have the same dimensions, their contents can be added, subtracted, multiplied and divided on an element-by-element basis:

>> a1 = [2 6 3; 0 4 7; 1 5 8]

a1 =

 2 6 3

 0 4 7

 1 5 8

>> a2 = [6 4 1; 2 8 0; 3 7 5]

a2 =

 6 4 1

 2 8 0

 3 7 5

>> a1+a2

% adds elements at corresponding locations of a1 and a2
ans =

 8 10 4

 2 12 7

 4 12 13

>> a1-a2

% subtracts corresponding elements of a1 and a2
ans =

 -4 2 2

 -2 -4 7

 -2 -2 3

>> a1.*a2

% multiples corresponding elements of a1 and a2 –
ans =

% note the period before the * symbol!
 12 24 3

 0 32 0

 3 35 40

>> a1.\a2

% divides elements of a1 into corresponding elements
Warning: Divide by zero.

% of a2 – note warning!
ans =

 3.0000 0.6667 0.3333

 Inf 2.0000 0
% Inf represents infinity (undefined)
 3.0000 1.4000 0.6250

>> a1./a2

% divides elements of a2 into corresponding elements
Warning: Divide by zero.

% of a1
ans =

 0.3333 1.5000 3.0000

 0 0.5000 Inf

 0.3333 0.7143 1.6000

>> 2*a1

% scales all of the elements in a1
ans =

 4 12 6

 0 8 14

 2 10 16

>> a1.^2

% squares all of the elements of a1
ans =

 4 36 9

 0 16 49

 1 25 64

>> a1*a2

% performs a matrix multiplication
ans =

 33 77 17

 29 81 35

 40 100 41

>> a1^2

% multiplies a1 by itself using matrix multiplication
ans =

 7 51 72

 7 51 84

 10 66 102

>>
other useful MATLAB functions: sum, min, max, linspace, find
Some additional built-in MATLAB functions that will come in handy include sum, min, max, linspace and find:

>> test1D = [3 5 1 7];

>> sum(test1D)

% returns the sum of the contents of a 1D array
ans =

 16

>> test = [1 2 3; 4 5 6; 7 8 9]

test =

 1 2 3

 4 5 6

 7 8 9

>> sum(test)

% for a 2D array, sum returns a 1D array of sums ans =

% of the columns
 12 15 18

>> sum(sum(test))

% invoke sum twice to obtain the sum of all the
ans =

% contents of a 2D array
 45
>> sum(sum(test(1:2,2:3)))
% returns sum of a smaller region of test array

ans =

 16

>> min(test1D)

% returns the minimum values

ans =

 1
>> min(test)

ans =

 1 2 3

>> min(min(test))

ans =

 1

>> max(test1D)

% returns the maximum values

ans =

 7

>> max(test)
ans =

 7 8 9

>> max(max(test))

ans =

 9

>>
linspace(x1,x2,n) returns a 1D array containing n values that are evenly spaced between x1 and x2:

linspace(2,15,5)

ans =

 2.0000 5.2500 8.5000 11.7500 15.0000

>>

Finally, the find function returns the locations of values in an array that satisfy an input logical expression.

>> nums = rand(1,7)
% create a 1D array of random numbers between 0 and 1
nums =

 0.9355 0.9169 0.4103 0.8936 0.0579 0.3529 0.8132

>> find(nums>0.5)

% returns the indices of numbers larger than 0.5
ans =

 1 2 4 7

>> nums = rand(4,4)
% create a 2D array of random numbers
nums =

 0.0099 0.6038 0.7468 0.4186

 0.1389 0.2722 0.4451 0.8462

 0.2028 0.1988 0.9318 0.5252

 0.1987 0.0153 0.4660 0.2026

% find numbers between 0.33 and 0.67
>> [r,c] = find((nums > 0.33) & (nums < 0.67))

r =

% r is a column vector of the row coordinates
 1

% of numbers in this range
 2

 4

 1

 3

c =

% c is a vector of the column coordinates of
 2

% numbers in this range
 3

 3

 4

 4

>>
For more information about these and other MATLAB functions, see the section on “Using the help system.”

M-Files, scripts and directories
A sequence of MATLAB commands can be stored in a text file and executed by entering the first name of the text file in the Command Window. The file must have a filename extension of .m and is referred to as a script, which is a type of M-File. Although any text editor can be used to create an M-File, MATLAB provides its own editor that is convenient to use. If an editor window is not currently open, use the File menu to open an existing M-File in the editor, or select New > M-File from the File menu to start a new file. You can type a sequence of commands in the editor and then select Save from the editor's File menu to name and save the file. The editor automatically formats MATLAB code with indentation to make the code more readable. Suppose a file is created, named testFile.m. The sequence of commands in this file can then be executed by selecting Run from the editor's Debug menu, or by entering the name testFile in the Command Window.
A comment can be placed in an M-File by preceding the text with %, as shown in the above code samples. Multiple lines of text can be put in comments by surrounding the block of text with %{ and %} placed on separate lines, as shown in the following script:
%{

This script creates a simple image with

two patches of constant intensity against

a black background

%}
image = zeros(50,50);

image(10:20,10:30) = 100;

image(25:40,15:45) = 200;

A script is executed as if the individual commands were entered, one-by-one, in the Command Window. As a consequence, existing variables in the MATLAB workspace can be altered by a script that uses variables of the same name, and new variables created by a script will remain in the workspace after execution is complete.

In the “Starting MATLAB” section, it was noted that there is a default current directory whose pathname differs on Macs, PCs and Linux machines. The current directory can be changed in the Current Directory window. The menu bar in this window contains an icon for navigating up one directory level, and double-clicking on a folder displayed in the window allows you to navigate down one level. Alternatively, the cd command can be used to specify a current directory. On a Linux machine, the pathname has the format shown in the following example:

>> cd(‘/usr/gdome/cs332’)

>> pwd

% prints the current directory

ans =

/usr/gdome/cs332

>> cd(‘~cs332/download’)
% set current directory for cs332 course material

>>
When a name, such as testFile, is entered in the Command Window, the MATLAB interpreter first checks if there is a variable of this name in the workspace. If not, it checks whether there is a built-in function of this name. If no built-in function exists, it looks for an M-File in the current directory with this name as the first file name (i.e., testFile.m). If no such file is found, the interpreter checks each directory in a list called the search path for a file of this name. If no file is found on the search path, an error is generated.

The search path initially contains all of the directories where MATLAB stores its files. The search path can be viewed by selecting Set Path… from the File menu. This brings up a dialog box with a list of current directories on the search path. On a Mac or PC, a new directory can be added by clicking either the Add Folder… or Add Folder with Subfolders… button, which brings up another dialog box that can be used to navigate to the directory to be added to the search path. To modify the search path on a Linux machine (this also works on PCs), first use the Current Directory window to navigate to the directory containing the folder (directory) to be added to the search path. Right-click on the folder and then select Add to Path in the menu that appears. A smaller menu will appear with the choices “Current Directory”, “Selected folders” or “Selected folders and subfolders”.
In order to execute a script from the editor using Run from the Debug menu, or by entering the name of the script in the Command Window, the script file must be stored in the current directory or some other directory listed on the search path.

When naming variables and files, it is helpful to remember the procedure that MATLAB uses to resolve a name that appears in a script or is entered directly in the Command Window. To determine whether a particular name already exists, use the exist function, which returns 0 if a name does not exist:

>> exist magic

% there is a file named magic.m on MATLAB’s search path
ans =

2

>> exist stars

% the name ‘stars’ does not exist
ans =

0

>>

Using the help system

MATLAB has an extensive library of built-in functions that are documented through the help system. Just enter help, followed by the name of a function:

>> help exist
...

>> help magic
...

The help command can also be used to print information about user-defined scripts and functions. In the case of scripts, any comments at the top of the script file that are preceded with a % are printed. For example, suppose the following script were stored in a file named helpTest.m:

% this script illustrates the application of the

% help command to user-defined script files

a = 10;

b = 3;

The comments can then be accessed through the Command Window:

>> help helpTest

 this script illustrates the application of the

 help command to user-defined script files

>>

You can also select MATLAB Help from the Help menu to access all of the online documentation.
Conditionals and loops

MATLAB provides if and switch statements for conditionals, and for and while statements for loops. This section introduces if and for statements. The if statement can follow one of three patterns:

if expression

<commands to evaluate if true>
end

if expression

<commands to evaluate if true>
else

<commands to evaluate if false>
end

if expression1

<commands to evaluate if expression1 is true>
elseif expression2

<commands to evaluate if expression2 is true>
elseif expression3

<commands to evaluate if expression3 is true>
...

else

<commands to evaluate of no other expression is true>
end

The expressions in the above patterns are logical expressions that can be created using the following relational operators, similar to Java and C: > < >= <= == ~= & | && ||
The general pattern for the for statement is:

for variable = values

<commands to evaluate for each value of variable>
end

It is common to use the colon operator or an existing 1D array to specify the values for the variable that controls the number of times that the body of the loop is executed. The following sequence of commands illustrates the use of if and for statements. The statements are formatted as they would appear if they were entered into an M-File. Semi-colons are typed at the end of each assignment statement so that the MATLAB output is suppressed during execution:

randomNums = rand(1,7);

% creates a 1D array of random numbers
numbers = zeros(1,7);

% between 0.0 and 1.0
for i = 1:7

% this loop is executed 7 times, with i assigned
 if (randomNums(i) < 0.33)

% to consecutive integers from 1 to 7
 numbers(i) = 0;

 elseif (randomNums(i) < 0.66)

 numbers(i) = i;

 else

 numbers(i) = 1;

 end

end

for i = 1:3:7

% this loop is executed 3 times, with i assigned
 numbers(i) = numbers(i) + 100;

% to 1, 4 and 7
end

numbers2D = rand(3,6);

for i = 1:3

% nested for statements can be used to loop
 for j = 1:6

% through a 2-D array
 if (numbers2D(i,j) < 0.5) | (j == 3)

 numbers2D(i,j) = 0.0;

 end

 end

end

nums = [3 8 2 9 1 5 8];

sum = 0;

for val = nums

% this loop is executed 7 times, with val assigned
 sum = sum + val;

% to each of the 7 numbers stored in nums
end

Suppose the above statements were saved in an M-File named forTest.m and then executed in the Command Window. The final values stored in the variables randomNums, numbers, numbers2D and sum are shown in the following printout:

>> randomNums

randomNums =

 0.6992 0.7275 0.4784 0.5548 0.1210 0.4508 0.7159

>> numbers

numbers =

 101 1 3 104 0 6 101

>> numbers2D

numbers2D =

 0.8928 0.8656 0 0 0 0

 0 0 0 0 0.8439 0.9943

 0 0.8049 0 0.6408 0 0

>> sum

sum =

 36

>>

Aborting a computation and Command Window shortcuts

Now that you know about loops, it’s useful to know how to terminate a runaway computation. When MATLAB is busy performing a computation, the word Busy is printed in the lower left corner of the full MATLAB window. The execution of any command can be aborted by typing control-C.

When entering commands in the Command Window, there are a number of handy shortcuts available. The up-arrow key cycles through previously entered commands, allowing you to repeat the execution of a command. The left- and right-arrow keys move the cursor back and forth through a line to facilitate editing, and the Tab key can be used for command completion. If you type part of a command and decide not to execute this command, press the escape key to erase the line.

A final handy shortcut is that multiple commands can be typed on one line, separated by commas:

>> x = 10, y = 15, z = sqrt(x^2 + y^2)

x =

 10

y =

 15

z =

 18.0278

>>

Managing variables and memory space

Large 2D and 3D arrays can occupy substantial memory space. It is possible for MATLAB to run out of memory, making it impossible to do further work. Fortunately, existing variables that are no longer needed can be eliminated, freeing up memory space for new variables. The who command prints the names of all variables currently defined in the MATLAB workspace, the whos command prints the name, size and type of each variable, and the clear command deletes variables from the workspace:

>> whos

 Name Size Bytes Class

 ans 1x1 8 double array

 im1 10x10 800 double array

 im2 20x20 3200 double array

 image 50x50 20000 double array

Grand total is 3001 elements using 24008 bytes

>> clear im1 im2
>> who
Your variables are:

ans image

>>

Executing the command clear all deletes all variables from the workspace.

Defining new functions

A new function can be defined in an M-File whose first filename is the same as the name of the function. The first statement in the file is a declaration line that indicates the name of the function and its inputs and outputs. This declaration line implicitly shows the format for calling the function. The generic pattern for a function definition is:

function <outputs> = <function name> (<inputs>)

<statements comprising the body of the function>

<inputs> is a list of input variable names, separated by commas. Inside the body of the function, the inputs can be accessed by name and assigned to new values. If the function returns a single value, then <outputs> is a single variable name. If multiple values are returned, then <outputs> is a bracketed list of variable names, separated by commas. Inside the body of the function, the output variable name(s) should be assigned to the value(s) to be returned.

Consider the following function named gaussian:

function g = gaussian(x, sigma)

% returns the value of a Gaussian function for a

% particular input location and spread

g = exp(-1.0*(x^2/sigma^2);

This function must be stored in a file named gaussian.m. The follow examples show how this function can be called:

>> gval = gaussian(3.0,2.0)

gval =

0.1054

>> gvals = zeros(1,6)

gvals =

 0 0 0 0 0 0

>> for x = 0:5

gvals(x+1) = gaussian(x,2.0);

% the body of a for statement is not
end

% indented when entered directly in the
>> gvals

% Command Window
gvals =

 1.0000 0.7788 0.3679 0.1054 0.0183 0.0019

>>

When a function is called with a particular set of inputs, the values of these inputs are copied into the input variables specified in the declaration line of the function definition. Similarly, values returned by a function are copied into the variables specified in the function call. Local variables created within a function definition only exist during the execution of the function. The following examples illustrate a variety of function definitions and their application.

The function gaussianFun returns a 1D array of samples of a Gaussian function. Its definition illustrates the reassignment of an input variable, sigma, and use of a local variable, xvals:

function g = gaussianFun(range, numSamples, sigma)

% returns a 1D array of samples of a Gaussian function

% with spread specified by sigma and x ranging from

% -range to +range

sigma = -1.0/sigma^2;

xvals = linspace(-range, range, numSamples);

xvals = xvals.^2;

g = exp(sigma.*xvals);
The function gaussianPlot illustrates the format of a declaration line for a function with no inputs and outputs. The plot function is described in the section, “2D and 3D plotting”:

function gaussianPlot

% function with no inputs and outputs -

% displays a graph of a gaussian function

gauss = gaussianFun(4,9,2.0);

% call to another user-defined function
xcoords = [-4:4];

plot(xcoords,gauss);

The last two functions can be invoked as follows:

>> gauss = gaussianFun(4,9,2.0)

gauss =

 Columns 1 through 7

 0.0183 0.1054 0.3679 0.7788 1.0000 0.7788 0.3679

 Columns 8 through 9

0.1054 0.0183
>> gaussianPlot

>>

The findZeros function returns two values, a 2D array and a number:
function [zeroMap, numZeros] = findZeros(image)

% returns a 2D array that is the same size as the input

% image array, with 1's at the locations of the zero

% values in the input image and 0's elsewhere. also

% returns the number of zeros in the input image

[xdim,ydim] = size(image);
% get the dimensions of the input array
zeroMap = zeros(xdim,ydim);
% create a new array of the same size
[x,y] = find(image==0);

% find the locations of zeros in the image
numZeros = length(x);

% determine the total number of zeros
for i = 1:numZeros

% place 1’s at the corresponding locations
 zeroMap(x(i),y(i)) = 1;

% of the zeroMap array
end
>> testImage = [6 2 0 6 1; 0 7 2 5 0; 7 6 2 0 3; 6 1 0 3 7; 8 0 6 9 0]

testImage =

 6 2 0 6 1

 0 7 2 5 0

 7 6 2 0 3

 6 1 0 3 7

 8 0 6 9 0

>> [zMap, nZeros] = findZeros(testImage)

zMap =

 0 0 1 0 0

 1 0 0 0 1

 0 0 0 1 0

 0 0 1 0 0

 0 1 0 0 1

nZeros =

 7

>>

An M-File that contains a new function definition can also contain the definitions of other functions that serve as helper functions, but only the main function whose name is the same as the M-File can be called directly from the Command Window or by functions in other M-Files.

using help to obtain information about user-defined functions

It was mentioned earlier that the help command can be used to obtain information about user-defined functions. In this case, any comment lines that immediately follow the function header and appear with a % at the beginning of the line are printed:

>> help gaussian

 returns the value of a Gaussian function for a

 particular input location and spread

>>
It is common to place a comment immediately following the header that illustrates how the function is invoked, so that this information is also accessible through the help command, for example:

function g = gaussian(x, sigma)
% g = gaussian(x, sigma)
% returns the value of a Gaussian function …
adding user input and output to function definitions

A function can request input from the user with the input function, which has a single input that is a quoted text string that is printed as a prompt to the user. The simplest ways to print out intermediate values during the execution of a function are to omit the semi-colon at the end of an assignment statement, or to create a string that contains text and variables, as illustrated in the newGaussian function shown below. The disp function displays in input value without printing a variable name. In the first call to disp, the input is an array of characters created by concatenating two literal strings and a string representation of the number stored in sigma, created with the num2str function.

function g = newGaussian(x)

% returns a sample of a Gaussian function after prompting

% the user for a value for sigma. also illustrates ways

% to provide printout of intermediate values

sigma = input('enter a value for sigma: ');
% request user input
disp(['you entered ' num2str(sigma) ' at the prompt']);

disp('the resulting Gaussian value is');

g = exp(-1.0*(x^2/sigma^2))

% note omission of semi-colon at the end
disp('have a nice day!');
>> gval = newGaussian(2);

enter a value for sigma: 3.0

you entered 3 at the prompt

the resulting Gaussian value is

g =

 0.6412

have a nice day!

>>
To create nicely formatted output, explore the sprintf and fprintf functions, which are similar to their counterparts in C and C++.

break and return statements

The execution of a break statement inside a loop immediately terminates the loop. The execution of a return statement anywhere in a function immediately terminates the function.

Types of numbers

By default, MATLAB represents numbers as double-precision floating point numbers that each require 8 bytes of storage space. A large 2D or 3D array of double-precision floating point numbers occupies a lot of memory space! Fortunately such precision is often not needed and MATLAB provides several other types of numbers that can be represented more compactly:

MATLAB name
size (bytes)

description

uint8

1

integers 0 to 255

uint16

2

integers 0 to 65,535

uint32

4

integers 0 to 4,294,967,295

int8

1

integers -128 to 127

int16

2

integers -32,768 to 32,767

int32

4

integers -2,147,483,648 to 2,147,483,647

single

4

single-precision floating point

For each type, there is a function of the same name that converts an input number to the desired type. In the example below, the function uint8 is used to create an array of integers of type uint8 from an array of numbers of type double:

>> image = 200*ones(100,100);

>> newImage = uint8(image);

>> whos

 Name Size Bytes Class

 ans 1x1 8 double array

 image 100x100 80000 double array

 newImage 100x100 10000 uint8 array

Grand total is 20001 elements using 90008 bytes

>>

The newImage array can be created directly, without the intermediate image array, by executing the statement newImage = uint8(200*ones(100,100)).
2D and 3D plotting

The plot function can be used to create 2D graphs. The essential inputs to plot are two 1D arrays containing the x and y coordinates of the points to be plotted. The plot function opens a graphic window called a figure window, draws axes with labels that are scaled to fit the range of the data, and connects the points with straight lines, as shown in the following example:

>> xc = 0.0:0.1:2*pi;
% 1D array of evenly spaced x coordinates from 0 to 2Π
>> yc = sin(xc);

% 1D array of samples of a sine function

>> plot(xc, yc);

% plot function displays the graph shown below

[image: image1.png]05

By default, the plot function draws a new graph in the most recently opened figure window. To create a new window, execute the figure command. The plot function is extremely versatile. For example, you can change the appearance and range of the axes, adjust the appearance of the graph with different line types, symbols and colors, add labels, display multiple graphs superimposed or multiple plots within a figure window, and create scatter plots or bar graphs. The contents of figure windows can also be saved for later retrieval or insertion into documents.

3D plots can be created with the functions plot3, mesh and surf. The following example illustrates the creation of a surface plot:

>> [x,y,z] = peaks(30);
 % peaks function returns x,y,z coordinates of a surface

>> surf(x,y,z);

 % creates the 3D surface plot shown below
[image: image2.png]

You can learn much more about these plotting functions through the MATLAB help facility.
Working with images

The basic MATLAB system, combined with the Image Processing Toolbox, provides many functions for reading, writing, displaying and processing 2D and 3D images. This section introduces the basic facilities that we will use extensively in CS332.

image types

There are four types of images that are supported in MATLAB. A binary image contains only black and white pixels and is stored in a logical array of 0’s and 1’s. An indexed image is an array of integers in a range from 1 to n that each represent an index into a separate colormap. The colormap is stored in an nx3 array, where each row contains values for the red, green and blue components of a particular color. Indexed images can be stored in arrays of type uint8, uint16 or double. The colormap is always an array of type double. An intensity image consists of intensity, or grayscale values. When displayed, an intensity image appears as a black and white photograph. Intensity images can be stored in arrays of type uint8, uint16 or double. Finally, an RGB image, or truecolor image, is stored in an mxnx3 array. The first two dimensions represent pixel location and the third dimension specifies the red, green and blue components for the color of each image pixel. An RGB image can also be stored in arrays of type uint8, uint16 or double. We will primarily work with intensity and RGB images. It is easy to convert between image types, using functions that were mentioned briefly in the section, “Types of numbers.”

reading and writing images

MATLAB can read and write images using many different file formats, obtained from many different sources. The most common image file types that we will use are JPEG, PNG and TIFF. The functions for reading and writing images are imread and imwrite. Extensive information about various image file formats and their specification can be obtained through the help pages for these two functions. The imread function has one essential input that is the name of the image file to be loaded into the MATLAB workspace. Often MATLAB can infer the type of file from its contents, so that it is not necessary to provide any further inputs to the imread function:

>> coins = imread(‘coins.png’);

>> peppers = imread(‘peppers.png’);

>> whos

 Name Size Bytes Class

 coins 246x300 73800 uint8 array

 peppers 384x512x3 589824 uint8 array

Grand total is 663624 elements using 663624 bytes

>>
The imfinfo function prints information about the format of an image, for example, try entering imfinfo(‘coins.png’). The essential inputs to the imwrite function are the image name and file name, with a file name extension that indicates the file format to use:

>> imwrite(image1, ‘image1.jpg’);

>> imwrite(image2, ‘image2.png’);

>>

By default, the image is stored in the current directory.

displaying images

MATLAB provides two functions that we will use for displaying images, imshow and imtool:

>> imshow(coins);

>> imtool(coins);

>>
[image: image3.png]

By default, the imshow function displays the image using 256 discrete levels of gray. The number of gray levels can be changed by providing a second integer input, e.g. imshow(coins,64). In the case of an 8-bit image, the value 0 is normally displayed as black and 255 is displayed as white. The imshow function can be called with a specified range of intensities to be displayed from white to black. For example, imshow(coins, [50,200]) displays intensity values of 50 or less as black, and intensities of 200 or higher as white. The values between 50 and 200 are evenly spread over the levels of gray from black to white. imshow can also be used to display binary, indexed and RGB images. Multiple images can be displayed in separate figure windows by calling the figure function to create a new window. Using the subplot function, multiple images can be displayed inside a single figure window. You can zoom in or out of an image displayed in a figure window, or change the size of the image by changing the window size. It is also possible to add figure annotations and print images that are displayed with imshow.

The imtool function displays the image in a separate, Java-based window called an Image Tool. The Image Tool provides special tools for navigating around large images and inspecting small regions of pixel values. Similar to imshow, a particular range of intensity values can be specified when calling imtool, e.g. imtool(coins, [50,200]). The main Image Tool window has a menu bar that allows you to open a smaller Overview window containing the full image, and a Pixel Region window that displays the intensity or RGB values within small image regions. You can also zoom in and out of the image to view it at different resolutions. The User’s Guide for the Image Processing Toolbox, available online through the Help menu and in hardcopy in the CS332 library in SCI E125, provides more detailed information about how to use the Image Tool.

Throughout the semester, we will use a mixture of built-in functions from the basic MATLAB system, additional functions from the Image Processing Toolbox, and custom-built software for analyzing images. Most of the basic MATLAB facilities that you will use are introduced in this document, and other tools will be presented as needed.

create picture files of full MATLAB windows for imshow and imview

close all

imview close all

and close button on window

rgb2gray

double image – display assumes [0.0 1.0]

things to do with imview – change magnification, overview of whole image, pixel region tool, image information window (Image Proc. Toolbox book p. 3-8?)

check everything used in code for assign1 and assign2, make sure relevant examples

check if format compact is necessary

PAGE
10

