

 CS/NEUR125 Brains, Minds, and Machines

 Lab 3: Eigenfaces Approach to Face Recognition

 Due: Wednesday, February 15

This lab explores the “Eigenfaces” approach to building an automated face recognition system
(Turk & Pentland, 1991), which is based on a statistical method known as Principal Components
Analysis. You will work with MATLAB two programs that explore aspects of the Eigenface
representation of a set of face images, and the performance of this method on a small dataset
that includes face images with varying lighting, expression, and orientation. For one exercise,
you will create a MATLAB script to display the results of model simulations, reinforcing
programming concepts that you learned in the first two labs.

To begin, create a copy of this Google document, modify the title of the copy to include your
partner names, and share the copy between partners, as you did in previous labs (for review,
see the Working with Google Docs for Lab Handouts webpage). Questions that you should try
to answer during lab are shown in blue, and those that you could answer later are shown in
purple.

Start MATLAB on the lab Mac that you are sharing. Use Fetch to download a folder of code and
image files named EigenfacesLab from the CS file server to the Desktop on your Mac. You will
find this folder inside the download folder in your individual account on the CS server (for
review, see details of this process for both Macs and PCs on this webpage). As in Lab 2, set the
Current Folder in MATLAB to be the Desktop of your Mac. In the Command Window, enter the
following command to enable MATLAB to access code and data files in this folder:

>> addpath(genpath(‘EigenfacesLab’))

In the contents of the Current Folder listed on the left of the MATLAB window, you should see
the EigenfacesLab folder, and its name should no longer be grayed out.

I. Using “Eigenfaces” to Represent Face Images

The Eigenfaces approach to face recognition captures the variation that exists in a collection of
face images, through a representation in which each image is encoded with a small number of
parameters, or weights. The Eigenfaces are the principal components of the particular set of
face images in the dataset. Each real face image can be reconstructed as a combination of the
various Eigenfaces. The contribution of a particular Eigenface to a particular face image is the
weight of that Eigenface (principal component) in that particular face image. The Eigenfaces
can be ordered in such a way that the first Eigenface has a pattern of image brightness that
captures the largest variance across the set of images, the second Eigenface captures the next
largest variance in brightness, and so on. The Eigenfaces, which can be viewed as images,
implicitly capture facial characteristics that we intuitively use to distinguish faces, such as the

http://www.scholarpedia.org/article/Eigenfaces
http://cs.wellesley.edu/~cs125/lab-handouts.html
http://cs.wellesley.edu/~cs125/labs/doc/matlab.html
http://cs.wellesley.edu/~cs125/labs/doc/server.html

shape of the head and the brightness and geometric arrangement of facial features. This first
part of this lab explores the connection between the Eigenface representation and facial
appearance. To begin, enter the following command in the Command Window:

>> eigenGUI

This opens a window for an interactive program that looks like this:

The large image display shows an average face at the center, obtained by calculating the mean
of a set of 100 face images. The set of images can be viewed in a separate figure window by
clicking the View Face Images button. The principal components (called Eigenfaces in this
context) were computed from this set of 100 images. You can view the top 25 Eigenfaces by
clicking on the View Eigenfaces button. In the initial display shown above, the first Eigenface is
portrayed as images on the horizontal axis, with a “positive” version displayed on the far right
(labeled +E1 and associated with a positive weight, as described in class), and a “negative”
version displayed on the far left end of the horizontal axis (labeled -E1 and associated with a
negative weight). The second Eigenface is shown on the vertical axis, with the positive version
at the top (labeled +E2) and negative version at the bottom (labeled -E2).

Using the graphical interface, you can view the result of adding these two Eigenfaces to the
average face, for different combinations of weights for E1 and E2. You can change the weights
using the horizontal and vertical sliders below and to the right of the visual display. The
position of each slider can be changed either by dragging the white rectangle that initially
appears at the center of the slider, or by clicking on one of the triangles at the two ends of the

slider. As you alter the sliders, the new weight is printed in the adjacent textboxes (weight = 0 in
the above picture), and the result of adding the scaled Eigenfaces to the average face appears
on the display. After you adjust the weights, you can click on the Keep Current Face button to
keep a particular composite image on the display. Clicking on the Refresh Display button will
reset the display back to its original state. You can also view the third and fourth Eigenfaces by
selecting Eigenfaces 3 & 4 in the upper right corner and then refreshing the display. These two
Eigenfaces capture more subtle variations between faces in the dataset.

● Q1. Consider the effect of adding only the first Eigenface (E1) to the average face, with a
large positive or large negative weight. Within each Eigenface image shown at the far
ends of the horizontal axis, regions that are very bright or very dark have a larger effect
when added to the average face. For the first Eigenface, where do these regions occur?
Compare the composite images with weights of 40 vs. -40. How does the appearance of
these two faces differ? Describe at least three differences in their appearance.

● Q2. Make the same comparison for Eigenfaces 2, 3, and 4 that you did in Q1. Again

describe how the appearance of the average face changes when only one of these
Eigenfaces is added with a weight of 40 vs. -40. Consider, for example, differences in
the location or appearance of the eyes, nose, and mouth, or overall shape of the head
(for each Eigenface, describe at least three facial characteristics that are altered).

● Q3. Examine the two face composite images below. Each one is a composite of two

Eigenfaces (either E1 & E2, or E3 & E4), with extreme values for each of the two weights
(40 or -40). For each example, what are the component Eigenfaces and weights?

II. Assessing the Performance of the Eigenfaces Approach to Face Recognition

This part of the lab explores the performance of the Eigenfaces approach for recognition, using
the Yale Face Database, which includes multiple images of 15 individuals, with variations in
facial expression and direction of the light source. This enables us to explore how well this
approach can generalize to the recognition of faces whose appearance differs from those used
to construct the Eigenfaces. To begin, enter the following command in the Command Window:

>> facesGUI

http://vision.ucsd.edu/content/yale-face-database

An interactive window will appear that looks something like that shown on the next page (some
regions will initially be blank).

The set of 105 images used to compute the Eigenfaces can be viewed in a separate figure
window by clicking the View Training Dataset button. You can view the top 25 Eigenfaces by
clicking on the View First 25 Eigenfaces button.

● Q4. You’ll see that the Eigenfaces here look quite different from those generated from
the face images used in the eigenGUI program. Why are the Eigenfaces different?
Select one Eigenface in the set of 25 and describe in general terms, what features of an
average face may be altered if a very large weight (positive or negative) were used to
create a composite image?

Each face image can be encoded by a set of numerical weights, one for each Eigenface that is
used to construct the representation. We noted earlier that the Eigenfaces (and the associated
weights) can be ordered in such a way that the first Eigenfaces capture large variations across
the set of face images, while later Eigenfaces capture more subtle variations. To see this, click
on the Generate Faces button. On the left side of the window, two images will appear at the
top, randomly selected from the dataset. The first Eigenface will appear in the middle and the
Add Eigenface button will become active. At the bottom, two copies of the average face
computed for the entire dataset will appear. You can now click repeatedly on the Add
Eigenface button, and on each button press, an additional Eigenface will be added to the
bottom images to create composite faces that eventually look like the two individual faces at the

top. For each person, the specific weight associated with the next Eigenface is printed on the
left or right side of the Eigenface image, and this weight is used to construct the composite face
image at the bottom. Click on the Generate Faces button again to view the construction of a
new pair of faces.

● Q5. How many Eigenfaces are typically needed to start distinguishing the two faces?
How many Eigenfaces are needed to create an identifiable version of each face?

To see how the Eigenfaces representation can be used to recognize a new face, we’ll first
consider the problem posed in the picture shown below (from the last slide posted for Class 5).
Imagine that there are only three people that the system can recognize, which are highlighted
with a red outline in the figure below. The weights associated with the first two Eigenfaces for
these three faces are shown in parentheses (in red) next to each face image. Given a new face
such as the one shown in the upper left corner (highlighted in blue), which is assumed to be one
of the known individuals, the PCA method can compute weights for the two Eigenfaces that can
be used to encode this new face (weights shown in blue).

● Q6. Describe a strategy for determining the identity of this new face, and use your
strategy to determine which of the three known people is the right identity for this face.

In general, we have a choice about how many Eigenfaces are used to encode each face image,
which also means that there’s a choice about how many numbers we use to encode each face.

Suppose we decide to keep 6 Eigenfaces, and therefore encode each face with 6 weights, one
for each Eigenface. You can generalize your recognition strategy to handle additional weights.
To see how this can be done, imagine again that there are three people who can be recognized
by the system. In the table below, there are 6 weights listed for each of these three people,
associated with the first 6 Eigenfaces.

 E1 E2 E3 E4 E5 E6

Mike 20 14 -10 5 -6 -4

Ellen -10 18 -3 10 -1 5

Isabel 14 -10 7 -3 2 5

Imagine that we are given a new face image to recognize and determine that the weights that
the PCA method computes for this message are:

 E1 E2 E3 E4 E5 E6

Mystery 15 -8 10 1 -3 6

We can still use the general strategy of finding which of the three known individuals has a
weight code that is closest to the set of weights for the mystery face, but now distance is defined
in 6 dimensions! Fortunately MATLAB provides a function that we can use to determine the
distance between two points in an n-dimensional space, norm. In the simple example below,
the norm function is used to calculate the distance between two points in a three-dimensional
space:

>> point1 = [20 -5 12];
>> point2 = [10 2 -3];
>> distance = norm(point1 - point2)
distance =

19.3391

The expression (point1 - point2) defines a line, or vector, between the two points in 3D space,
and norm then determines the length of this line.

● Q7. Use MATLAB, the norm function, and the weights provided in the above tables, to
recognize the identity of the mystery person. Copy/paste your MATLAB code here (you
can either create a script or just enter commands into the Command Window) and your
final answer.

A key test for a face recognition method is how well it can generalize beyond the particular face
images used to construct the system. What happens, for example, if a face is viewed under
different lighting, or with a different expression, or appears at a different orientation in the image,
relative to previously viewed faces? Return to the interactive facesGUI program in MATLAB.

From the pull-down menu labeled Test Set, select a particular set of new test images to be
recognized. Each test set consists of 30 images that can be viewed by clicking on the View
Test Faces button. If you click on the Run Test Faces button, the performance of the system
on this test set will be printed in the textbox below the button. The statement Accuracy =
43.3%, for example, means that the system only recognized 43.3% of the test faces correctly
(13 of the 30 test images in this case). The performance of the system also depends on the total
number of Eigenfaces, and hence the total number of weights, used to encode each face. This
number is initialized to 25, but you can change this number in the textbox labeled Number of
Eigenfaces.

● Q8. In the table below, record the performance (Accuracy) of the system for each of the
three test conditions, and for 5, 10, 15, 20, and 25 Eigenfaces.

 5 10 15 20 25

new lighting

new expression

new orientation

● Q9. Write a script in the MATLAB Editor that creates a figure with three plots showing

the performance for new lighting, expression, and orientation, as a function of the
number of Eigenfaces used. The sample code on the next page below shows how to use
the hold on command to combine multiple plots, and the legend command to add a key
to the figure. Copy and paste your code and final figure into this file.

● Q10. How well does this face recognition method generalize to these new conditions that

are not contained in the original dataset used to construct the Eigenfaces
representation? How do the results depend on the number of Eigenfaces used?
Challenge question: why do you think this method performs so poorly for one of these
general conditions?

References

Turk, M & Pentland, A. (1991) Eigenfaces for Recognition, Journal of Cognitive Neuroscience,
3(1), 71-86.

http://www.scholarpedia.org/article/Neuroscience

