

 CS/NEUR125 Brains, Minds, and Machines

 Lab 4: Artificial Neural Networks

 Due: Wednesday, February 22

This lab explores the design and analysis of artificial neural networks to recognize handwritten
digits from images. This application of neural nets was first explored by Yann LeCun and
colleagues, who trained a network to recognize handwritten zip code digits from image samples
provided by the U.S. Postal Service (LeCun et al., 1989). The first part of this lab uses an
interactive tool provided with the MATLAB Neural Network Toolbox to explore basic aspects of
network design, and one method for measuring the performance of a network. In the second
part of the lab, you will work with a script file to analyze the behavior of a neural network in more
detail, for two different network design choices.

To begin, create a copy of this Google document, modify the title of the copy to include your
partner names, and share the copy between partners, as you did in previous labs. Questions for
you to answer for this lab are shown in blue.

Start MATLAB on the lab Mac that you are sharing, and use Fetch to download the folder
named NeuralNetsLab from the CS file server to the Desktop on your Mac. You will find this
folder inside the download folder in your individual account on the CS server. For this lab, set
the Current Folder in MATLAB to the NeuralNetsLab folder. To do this, you can first set your
Current Folder to the Desktop of your Mac as you did in previous labs, and then double-click on
the NeuralNetsLab folder that is listed among the contents of the Current Folder on the left side
of the MATLAB window.

I. Using the MATLAB nprtool to Design and Test a Neural Network to Recognize Digits

MATLAB provides an interactive software tool for constructing simple neural networks and
running simulations to train and test the networks for different datasets. For this lab, we will use
a subset of the MNIST dataset consisting of images of handwritten digits (from 0 to 9). Enter the
following command in the Command Window to load the data:

>> load MNIST.mat

The data consists of 3000 images of handwritten digits, with each image of size 28 x 28 pixels.
Enter the following command to view the first 400 image samples:

>> displayData(X, 20, 20, 650, '400 MNIST image samples')

Enter the following command to start the neural network pattern recognition tool:

>> nprtool

http://cs.wellesley.edu/~cs125/labs/doc/matlab.html
http://yann.lecun.com/exdb/mnist/

The following window will appear:

Click on the Next button in the bottom right corner. The next window (Select Data) is used to
select the sources of the input and output data for the network. For this application, the inputs
are stored in a 784 x 3000 matrix named digitInputs and the correct outputs are stored in a 10
x 3000 matrix named digitTargets (the content of these matrices will be described in lab).
Select these two variable names from the pull-down menus labeled Inputs: and Targets:, as
shown below (only the top half of the window is shown):

Again click on the Next button in the bottom right corner to move to the Validation and Test
Data window, shown on the next page. The 3000 image samples are divided into three groups:

1) one subset of image samples to be used for training the neural network
2) one subset of images that is distinct from the training set, which is used to

determine when to terminate the learning process - training ends when there is

no longer any improvement in performance on this set, which is referred to as the
validation set

3) a subset of images that is distinct from the training and validation sets, used to
test the performance of the network at recognizing “new” data samples.

Using the pull-down menus on the left side of the window, you can adjust the portion of the 3000
image samples used for training, validation, and testing. Leave the default values for now.

Click on the Next button again to see a window that enables you to specify the Network
Architecture, by indicating the number of Hidden Neurons (hidden units) to use. Leave the
default value of 10 hidden units for now. You will see a depiction of the structure of the network
at the bottom of the window (see picture below). The unit labeled b in the Hidden and Output
layers is the “bias” unit that we described in class.

Click on the Next button once more, to advance to the Train Network window (see picture on
the next page). Click on the Train button to run the backpropagation method to train the neural
network that you created. As the network is being trained, a new window appears, labeled
Neural Network Training (nntraintool) at the top. In the Progress box in the middle of this
window, you will see the number of iterations (labeled Epoch:) increase over time. As indicated
earlier, and suggested in comments in the Train Network window, the learning ends when
there is no longer any improvement in performance on the validation set. There are two
measures used to evaluate the overall performance of the trained network on the test set,
Cross-Entropy and Percent Error. We will focus on the Percent Error, which is the fraction of
samples in the test set that were misclassified (e.g. an image of the digit “7” was misclassified
as a “9”). This measure is listed in the far right column of the Results table in the upper right
corner of the Train Network window. After the network is trained, the Train button changes to a

Retrain button, enabling you to repeat the learning process for the same network. We will
explore the Plot Confusion and Plot ROC options later in this lab.

Q1. In the table below, record the Percent Error (%E) listed in the third row of the
Results box (labeled Testing:) and the total number of iterations shown in the window
labeled Neural Network Training (nntraintool). You will see that the results vary
across the three runs. Why might the results differ for multiple runs of the same training
process? In your answer, describe how are the weights of the initial network are set, and
how the data samples are divided among the training, validation, and test sets. Enter the
average value of the Percent Error and Number of Iterations in the far right column of the
table.

(10 Hidden Units) Run 1 Run 2 Run 3 Mean

Percent Error

Number of Iterations

Q2. Click on the Back button to return to the Network Architecture window and change
the number of hidden units to 25. Proceed to the Train Network window again, run the
training process three times for this new network, and again record the Percent Error
and Number of Iterations for each run, as well as the average values, in the table below.
Did performance get better or worse relative to the results reported in Q1?

(25 Hidden Units) Run 1 Run 2 Run 3 Mean

Percent Error

Number of Iterations

Q3. Using the Back buttons, return to the Validation and Test Data window and set the
fraction of samples used for both validation and testing to 35%. You will see that the
number of samples used for training in this case is reduced to only 30% (900 image
samples). Set the number of hidden units to 10 (the default), run the training process
three times for these new conditions, and record the Percent Error and Number of
Iterations for each Run, and average values, in the table below. Relative to the
conditions tested in Q1, did performance get better or worse?

(30% Training Data) Run 1 Run 2 Run 3 Mean

Percent Error

Number of Iterations

Using the Next button, advance the tool until you see the Save Results window. In the top of
the window, click on the Simple Script button to see how MATLAB can create a script file that
contains comments and code statements to design and train the neural network that you just
created inside the nprtool program. Read through the comments and code in this file, which will
be opened in the MATLAB Editor. You do not need to save this file.

In the Save Results window of the nprtool program, click on the Finish button in the bottom
right corner to end the session. The rest of this lab will use a script file like the one you viewed.

Open the mnistScript.m code file in the Editor by clicking on its name in the Current Folder. In
the Editor, click on the green triangle labeled Run in the menu bar at the top of the window, or
enter the following command in the Command Window, to run the script file:

>> mnistScript

The overall Percent Error and number of iterations will be printed in the Command Window. In
lab, we will go through the code and also describe what is displayed in the various figure
windows that appear when you run the code (Performance Plot, Error Histogram, Confusion
Matrix, and ROC Plot). Following this introduction, answer the following questions about the
results obtained for this example (note that if you run the code again, you will obtain slightly
different results, similar to your experience with the nprtool program).

Q4. For this example, what was the overall Percent Correct obtained, and the Number
of Iterations performed during the training process?

Q5. Examine the plot labeled Performance at the top. The vertical axis shows Mean
Squared Error, and you will see some values labeled on this axis in scientific notation.
What are the corresponding values in decimal notation? Does the error obtained for the
Test set always decrease monotonically as each new iteration (Epoch) is performed (i.e.
always decreases from one iteration to the next)? At the point where the “Best”
performance on the Validation set is reached, is the performance on the Training set
better or worse?

Q6. Next examine the plot labeled Error Histogram at the top. What is the overall range
of the error values on the horizontal axis? What are the possible target (correct) values
that could be obtained for a particular output unit of this network? How might one get

one
of the extreme error values (i.e. what are combinations of the “correct output” and output
computed by the network, that would yield these extreme error values)? What is the
range of error values for the center bin of the histogram that has the most instances?

Now observe the figure labeled Confusion Matrix. The Target Class (correct digit) of the
image samples is shown along the horizontal axis, and the Output Class (digit computed by the
network) is shown on the vertical axis. Each box shows the number of samples in the network
results (out of the full set of 3000 samples) that correspond to each combination of Target and
Output class. The green squares show how many samples of each target digit were classified
correctly, while the red squares show numbers of samples that were classified incorrectly.
Consider the Confusion Matrix shown below. In this example, 289 image samples of the digit “6”
were correctly classified as a 6 (see matrix location circled in black). On the other hand, 23
image samples of the digit “5” (Target Class) were incorrectly classified as a 3 (Output Class),
according to the content of the matrix location circled in blue.

The figure below shows some examples of images whose digit class was misclassified by one
sample network:

Q7. Save the Confusion Matrix that is displayed for your example and then drag it
into this document. What are some sample combinations that yielded large numbers of
“confusions”? Report the Target and Output class for four combinations that yielded
many confusions. Are you surprised by these confusions (briefly explain why or why
not)? Along the bottom row of the matrix, the green numbers show the percentage of
samples for each Target Class that were classified correctly, and red numbers show the
percentage of each Target Class that were misclassified. For your example, which

digit(s) were the most difficult to recognize correctly?

Q8. Finally, observe the figure labeled Receiver Operator Characteristic (or ROC) at
the top. In lab, we will discuss the meaning of ROC curves. The ROC curve for each
Class (digit) is displayed in a different color. Observing the ROC curves for your
example, which digit(s) appear to be the most difficult to classify correctly (this many not
be apparent if they were all classified well)? Are these digits similar to the ones you
observed as difficult to classify in Q7?

Q9. The current script specifies 10 hidden units for the network. Modify the script so that
25 hidden units are used instead and run the code with this new network architecture.
Describe at least three ways that the results changed from those described for the
network with only 10 hidden units.

Q10. Provide two questions of your own, about things related to Neural Networks that
you still find confusing.

Reference
LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W. & Jackel, L.D.
(1989) Backpropagation Applied to Handwritten Zip Code Recognition, Neural Computation 1,
541-551.

