Spatial navigation in humans

Recap: navigation strategies and spatial representations
Spatial navigation with immersive virtual reality (VENLab)
Do we construct a metric cognitive map? Importance of visual landmarks in navigation!
Representing space with a "labeled graph"?
Role of decision-making when exploring new spaces
To what extent are various brain areas engaged during different types of navigation behavior?

Spatial navigation with immersive virtual reality

- immersive virtual reality gives subjects a realistic interactive environment
- subject moves freely in a $12 \mathrm{~m} \times 12 \mathrm{~m}$ room
- 3D location and orientation is tracked continuously, visual input updated
- cues: stereo/motion vision, proprioception, vestibular

Do humans combine traveled routes into a survey representation that permits metric navigation in the environment?

- subjects learn two paths (home to blue, home to red) to remembered target locations
- after training, walk novel shortcut between targets
- if subjects represent metric information about distances and angles, they should be able to accurately walk the novel shortcut
- if subjects rely on landmarks, expect more accurate performance for forest scene
- poor performance for desert (questions metric map)
- good performance for forest (landmarks important!)

desert

forest

Spatial knowledge based on labeled graphs

Chrastil \& Warren (2014)

a) Graph

Graph representations of spatial knowledge

Graph in (a) only captures connectivity

- nodes represent places visited
- edges represent connectivity (routes)
- enables detours

Labeled graph in (b) includes metric info

- connections have distances, nodes have angles between paths that meet at node
c) Survey

- may be less precise than survey knowledge
- good enough for finding efficient routes or detours, novel shortcuts

Exploring sources of spatial knowledge

Chrastil \& Warren $(2013,2014)$

Subjects explored maze for 10 mins to learn
locations of 8 objects

- active vs. passive (free vs. guided)

Different cue combinations:

- visual + vestibular + podokinetic (walk)
- visual + vestibular (wheelchair)
- visual (video)

Testing (2013 study):

- walk along novel shortcut between pair of objects, using remembered locations (as the crow flies, with no visual input)
- survey knowledge needed for this task

2014 study:

- no visual + vestibular condition
- walk shortest path within maze corridors
- occasional barriers to force detours
- route/graph knowledge needed for this task

After training, walk between two learned objects using shortest path possible

40\% trials: barrier appears,
 requiring detour from plan

Experienced paths between sink and bookcase

During test, walked the shortest novel path between sink \& bookcase

Neural evidence supports a novel framework for spatial navigation Elizabeth Chrastil (2013)
I turned 30° and walked 5 m from
my initial heading and location
(EC, HC)
takes me to the market,
turning left takes me home
(HC, CN)
(HC, CN)
City Hall is at the corner
of Main and Broadway
(HC)
I turn right on 5th street,
then left on Broadway,
then go four blocks, and
City Hall is on the left
(HC, RSC)

