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Topics Addressed

• Frequency Modulation
• Controlling FM
• Harmonicity in FM
• Negative Frequencies
• Uses of FM Synthesis
• Phase Modulation



Amplitude Modulation

𝐴 sin(2𝜋𝑓𝑡 + 𝜙)

Replace a constant amplitude



Frequency Modulation

𝐴 sin(2𝜋𝑓𝑡 + 𝜙)

Replace a constant frequency



Phase Modulation

𝐴 sin(2𝜋𝑓𝑡 + 𝜙)

Replace a constant phase



Frequency Modulation

• We have seen how multiplying two signals can lead to interesting 
effects with sidebands for both ring modulation and amplitude 
modulation.
• Both Frequency Modulation and Phase Modulation involve 

challenging math (calculus and Bessel functions of the first order), so 
we will take a more exploratory approach and not provide quite the 
level of mathematical detail as we did with AM synthesis
• Like AM synthesis, frequency modulation requires a carrier wave and 

a modulator wave.  Here we will be modulating the frequency of the 
carrier wave with a modulator wave.



Frequency Modulation

• Consider a carrier wave 𝐴! sin(2𝜋𝑓!𝑡 + 𝜙!) where 𝐴! is the amplitude of 
the carrier frequency, 𝑓! is the frequency of the carrier frequency, and 𝜙! is 
the phase of the carrier frequency.  
• We want to modulate 𝑓!.  This means that at any given instant the value of 
𝑓! will be changing, which distinguishes it from amplitude modulation.
• Let’s define a modulator signal called 𝑚(𝑡).  For our purposes, 𝑚 𝑡 will be 

a periodic waveform scaled between -1 to +1 like a sine wave. 
• Let’s then define the instantaneous frequency of our signal as 𝑓! + 𝑘"𝑚 𝑡

where 𝑘" is a constant expressing the deviation away from the carrier 
frequency.
• Why express our instantaneous frequency like this?  We preserve the original carrier 

frequency 𝑓! and fluctuate around that value.



Aside: Deriving an equation for FM
• The value of a sine wave is determined by its phase which is simply a 

number in radians.  We plug in a time t that gives us back a number in 
radians that then is plugged into sine to give us an amplitude.
• Instantaneous frequency then is the change in phase with respect to time 

in the same way that instantaneous velocity is the change in distance with 
respect to time.  With most sine waves, the instantaneous frequency is 
constant. For example, a sine wave with frequency 440Hz is its 
instantaneous frequency.  These two equations then are equivalents: 
𝐴! sin 2𝜋𝑓!𝑡 + 𝜙! = 𝐴! sin 2𝜋 ∫#

$ 𝑓% 𝑡 𝑑𝑡 + 𝜙! where 𝑓% 𝑡 is the 
instantaneous frequency based on time.  If the instantaneous frequency is 
constant, say 440Hz, then 𝐴! sin 2𝜋 ∫#

$ 440𝑑𝑡 + 𝜙! =
𝐴! sin 2𝜋 440 𝑡 + 𝜙! which makes intuitive sense.



Aside: Deriving an equation for FM

• 𝐴! sin 2𝜋 ∫"
# 𝑓$ 𝑡 𝑑𝑡 + 𝜙! expresses a signal based on 

instantaneous frequency.  Here let’s use the instantaneous frequency 
we were considering before: 𝑓! + 𝑘%𝑚 𝑡

• 𝐴! sin 2𝜋 ∫"
#(𝑓! + 𝑘%𝑚(𝑡))𝑑𝑡 + 𝜙!

• 𝐴! sin 2𝜋𝑓!𝑡 + 2𝜋𝑘% ∫"
#𝑚(𝑡)𝑑𝑡 + 𝜙! <- final form

• Note that 𝜙! is often ignored and set to zero.



Frequency Modulation in SC

(
SynthDef(\freqMod, {

arg out = 0, freq_c = 440, freq_m = 1, k_f = 1;
var sig = SinOsc.ar(freq_c + (k_f * SinOsc.ar(freq_m)), 0, 1);
Out.ar(out, sig ! 2);

}).add;
)



Frequency Modulation Observations

• When 𝑘% is small and the frequency of the modulator is also small, we 
perceive a vibrato effect as the pitch of the carrier fluctuates subtly. 
• Note that the frequency of the modulator must be an LFO

• If we keep modulator frequency as an LFO but increase 𝑘% to 
anywhere above 10, we start getting a wacky swooping sort of sound.
• When the frequency of the modulator reaches the audible range (> 

20Hz), we start to perceive other notes, also called sidebands, in the 
same way with AM synthesis. 



FM Sidebands

• Mathematically converting the equation for FM synthesis when 
𝑚 𝑡 = sin(2𝜋𝑓&𝑡) into a sum of sines is mathematically beyond the 
scope of this class (requires knowledge of Bessel functions of the first 
order).
• Important information about sidebands:

• The carrier frequency is always present and generally has the largest 
amplitude.

• Symmetric sidebands exist around 𝑓! at a distance of 𝑓! ± 𝑛𝑓" where 𝑛 is an 
integer from 0 to infinity.

• As 𝑛 increases the amplitude of the sidebands decreases.



Visualizing FM Sidebands

Frequency
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de

𝑓!

𝑓! + 𝑓"𝑓! − 𝑓"

𝑓! + 2𝑓"𝑓! − 2𝑓"



Controlling Sidebands

• The frequency of the modulating wave determines at what frequency the 
sidebands occur
• These partials can be either harmonic or inharmonic

• The value 𝑘" (frequency deviation) from our instantaneous frequency 
formula 𝑓! + 𝑘"𝑚 𝑡 determines the amplitude of the sidebands.  
• Like AM synthesis, FM synthesis also has a modulation index.  It is defined as the 

ratio 
"!
#"

. 
• In most analog and digital FM synthesizers sideband strength is controlled through 

the modulation index which is proportional to 𝑘# but is scaled by 𝑓$.
• The Wikipedia article on FM has a chart explaining the amplitude of sidebands based 

on the modulation index.  Note that as the modulation index increases, the carrier 
wave’s frequency can have a smaller amplitude than some of its sidebands.  



Exploring FM Synthesis
(
SynthDef(\freqModMouse, {

arg out = 0, freq_c = 500;
var car, mod, modIndex, freq_m;
freq_m = MouseX.kr(1, 10000, 1).poll;
modIndex = MouseY.kr(0, 10, 1);
mod = (modIndex * freq_m) * SinOsc.ar(freq_m, 0, 1);
car = SinOsc.ar(freq_c + mod, 0, 1);
Out.ar(out, car ! 2);

}).add;
)

The poll method on a 
UGen posts its value every 
tenth of a second.

• FM synthesis can produce a wide range of different sounds.  Here the modulation index is mapped to y-
axis of the mouse which will strengthen the amplitude of the sidebands.  The frequency of the modulator 
is mapped to the x-axis to control the location of the sidebands.

• Question: for what frequencies and/or modulation indices does FM synthesis produce harmonic partials?



Negative Frequencies

Frequency

Amplitude
𝑓!

𝑓! + 𝑓"𝑓! − 𝑓"

𝑓! + 2𝑓"𝑓! − 2𝑓"

400Hz 1200Hz 2000Hz−400Hz−1200Hz

Consider when 𝑓! = 400 and 
𝑓" = 800.   Because sidebands 
are symmetric, this will 
produce negative sidebands.



Negative Frequencies

• To consider the case of negative frequencies, let’s rely upon our 
trigonometric identities.
• sin(−𝜃) = −sin 𝜃
• −sin 𝜃 = sin(𝜃 + 𝜋)
• Therefore, sin(−𝜃) = sin(𝜃 + 𝜋)

• If we consider any sideband with negative frequency represented as 
𝐴' sin(−2𝜋𝑓'𝑡), then this is equivalent to 𝐴' sin(2𝜋𝑓'𝑡 + 𝜋)
• Negative frequencies are nothing special to the ear other than phase shifted 

versions of the absolute value of that frequency
• When using a frequency scope, this means negative frequencies “wrap 

around” to positive frequencies.



Negative Frequencies

𝑓! = 600
𝑓" = 500 600100

-400

-900

1100

1600

2100

Note how -400Hz wraps to 400Hz and -900Hz wraps to 900Hz



Harmonicity Ratio

• We can define the harmonicity ratio as "%
"&

or "&
"%

depending on the text.  
When either produces an integer, the partials of FM synthesis will be 
harmonic (i.e., partials from the harmonic series).  For our purposes, we 
will prefer "%

"&
because 𝑓! will always be the fundamental.  Remember the 

harmonic series is produced by integer multiples of some fundamental.  
Same thing!
• When the harmonicity ratio is not an integer then FM synthesis will 

produce inharmonic partials.
• We can say then that the harmonicity ratio 𝑟 gives us the equation for the 

frequency of the modulator as 𝑓& = 𝑟 ∗ 𝑓! where 𝑟 is a positive integer.



Visualizing FM Sidebands
with Harmonicity Ratio
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Visualizing FM Sidebands
with Harmonicity Ratio
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𝑓! + 𝑟𝑓!𝑓! − 𝑟𝑓!

𝑓! + 2(𝑟𝑓!)𝑓! − 2(𝑟𝑓!)



Visualizing FM Sidebands
with Harmonicity Ratio
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𝑓!(1 + 𝑟)𝑓!(1 − 𝑟)

𝑓!(1 + 2𝑟)𝑓!(1 − 2𝑟)



Visualizing FM Sidebands
with Harmonicity Ratio
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𝑓!

𝑓!(1 + 𝑟)𝑓!(1 − 𝑟)

𝑓!(1 + 2𝑟)𝑓!(1 − 2𝑟)

Assume that 𝑟 > 1 and that 
𝑟 is a natural number 

All negative!  Will wrap!



Harmonicity Ratio

• Sidebands generated when 𝑟 > 1 and 𝑟 is a natural number will be 𝑓!
plus the nonpositive sidebands that wrap  𝑓!(1 − 𝑟) ,  𝑓! 1 − 2𝑟 , … 
plus the positive sidebands 𝑓!(1 + 𝑟), 𝑓!(1 + 2𝑟), …
• When 𝑟 = 1, we get all partials.
• When 𝑟 = 2, what partials are generated?

• 𝑓!
• Wrapped negative sidebands : 𝑓!(1 − 𝑟) ,  𝑓! 1 − 2𝑟 , … or 𝑓! , 3𝑓! , 5𝑓! , …
• Positive sidebands: 𝑓!(1 + 𝑟), 𝑓!(1 + 2𝑟), … or 3𝑓! , 5𝑓! , 7𝑓! , …
• All odd harmonic partials!  Like a triangle or square wave.

• What about 𝑟 = 3? Or higher ratios?



FM Synthesis Brief History

• Frequency Modulation was first used in radio in 1933.  It was a better, 
less noisy way of transmitting signals compared to AM Radio.
• FM Synthesis in music was developed by John Chowning at Stanford 

University starting in 1967 and patented in 1975
• It was a “cheap” way to produce complex sounds with simple unit generators 

(i.e., two sinusoids)

• FM Synthesis was used in the early development of digital 
synthesizers by Yamaha
• The patent for FM Synthesis expired in 1995 and can now be freely 

used in any digital synthesizer



Uses of FM Synthesis

• FM Synthesis is capable of producing both harmonic and inharmonic 
complex sounds including percussive, metallic, instrumental, and bell-
like sounds.
• Instrument modeling, the technique of imitating a physical musical 

instrument via sound synthesis
• FM Synthesis was the basis of the Yamaha DX7, one of the most influential 

digital synthesizers in the 80s – Check out this video

• See \fmEnv and \fmShimmer in lecture code to see some 
interesting sounds that can be produced from FM Synthesis

https://www.youtube.com/watch?v=WiYa4oUxKR8


Aside: Phase Modulation

• Phase modulation is closely related to frequency modulation and 
many of the conclusions that we can draw from frequency 
modulation also apply to phase modulation.  
• Phase modulation is sometimes called indirect FM or Chowning-style FM.

• Given a carrier wave, 𝐴! sin 2𝜋𝑓!𝑡 + 𝜙! , and a modulating signal, 
𝑚(𝑡), we can express phase modulation as 𝐴! sin8
9

2𝜋𝑓!𝑡 + 𝑘(𝑚 𝑡 +
𝜙! where 𝑘( is the frequency deviation that determines the 
“strength” of the modulating wave.
• Note that for simplicity’s sake 𝜙! is usually assumed to be 0.  Thus, we can 

also write 𝐴! sin 2𝜋𝑓!𝑡 + 𝑘/𝑚 𝑡



Aside: Phase Modulation in SC
(
SynthDef(\phaseMod, {

arg out = 0, freq_c = 440, freq_m = 1, k_p = 1;
var sig = SinOsc.ar(freq_c, SinOsc.ar(freq_m, 0, k_p).mod(2pi), 1);
Out.ar(out, sig ! 2);

}).add;
)

~phaseMod = Synth(\phaseMod);
~phaseMod.set(\freq_c, 500);
~phaseMod.set(\freq_m, 750);
~phaseMod.set(\k_p, 0.01); 
~phaseMod.free;

• Note that mod(2pi) is necessary here because SinOsc must be wrapped between +/- 8pi
• The partials and their organization in PM synthesis is the same as in FM synthesis.  We can’t 

perceive any aural difference between the two and it’s impossible to tell the difference between 
PM/FM synthesis

• There are differences though in terms of radio because the signal needs to be demodulated and 
the original modulating signal needs to be retrieved.  


