
Types of Waves

Topics Addressed

• Sawtooth Wave
• Triangle Wave
• Square Wave
• Pulse/Rectangle Wave

Recap

• Sine waves have three important properties: frequency, amplitude and
phase
• Complex sounds are sounds that contain two or more sine waves.
• The harmonic series is a specific mathematical combination of sine waves

that are perceived by our ears as fusing together into one pitched sound.
• The lowest note in the harmonic series is the fundamental
• Sine waves at higher frequencies in the series are called overtones
• Changes to relative strength of these notes impacts our interpretation of the timbre

of the sound
• Intervals (the measure of musical distance) is perceived as the ratio of two

frequencies, not the absolute difference.

Fourier Transform

• We have seen in the context of pitch, that
many pitches are the result of complex
sounds which are simply two or more waves.

• It turns out that ANY periodic signal or sound
can be reduced to a combination of weighted
sine waves.
• Attributed to Joseph Fourier who showed how to

break down a signal into its constituent parts
• We are going to study several basic waves. All

of these can be thought of as combinations of
various sine waves.

• We can think of sine waves as the basic
building blocks of sound.

• Much more on Fourier and his
transform/series later.

Sawtooth Wave
• The sawtooth wave is derived from the frequencies of the harmonic series.
• Harmonics: all harmonics
• Amplitude: 1/(Harmonic Number)
• Optional: Shifting the phase of the even harmonics by 180 degrees will make a

sawtooth wave that ramps up instead of ramping down. No difference in how
we perceive the sound.

One harmonic Two harmonics Three harmonics

Four harmonics Five harmonics Six harmonics

Additive Synthesis

• Creating a sawtooth wave out of 2 to n sine waves is an example of
additive synthesis. Additive synthesis is the technique of adding sine
waves together to create complex sounds and timbres.
• A sawtooth wave with two harmonics of frequency f is equivalent to
!"# $%&'

(
+ !"# $%($&)'

$
• A sawtooth wave with three harmonics of frequency f is equivalent to
!"# $%&'

(
+ !"# $% $& '

$
+ !"# $% +& '

+
• In sclang, we write {SinOsc.ar(440, 0, 1) + SinOsc.ar(880, 0, 0.5} +
…}.play

Summation Notation of Sawtooth Wave

• If a sawtooth wave is an infinite sum of sine waves, then let’s use
summation notation to express the wave.
• Consider 𝑔(𝑡) to be a sawtooth wave as a function of 𝑡 (time) in seconds

with a fundamental frequency 𝑓 and fundamental amplitude 𝐴.
• Then…

𝑔 𝑡 = %
,-(

.
𝐴
𝑛
sin(2𝜋𝑓𝑛𝑡)

𝑛 represents the harmonic
number where 𝑛 = 1 is the
fundamental

.dup method

• The .dup method is very helpful in sclang and you will use it often.
We will need it to make a sawtooth wave out of simple sine waves.

2.dup; // When called on a number, it duplicates the number,
// storing the contents in an array

2.dup(3); // Duplicates the number three times
{|x| x}.dup(20); // On a function, it creates and evaluates n

// functions where the ith function
// between 0 and n-1 is passed i

440 ! 2; // ! is a shorthand for dup

Summing Arrays

• In Python, the + operator concatenated two lists together. In sclang,
the + operator on arrays adds each element pointwise.

[1, 2] + [3, 4] // evalutes to [4, 6]
[1, 2, 3] + [-1, -2, -3] // evalutes to [0, 0, 0]

• This is particularly useful because we can sum sine waves together
using + operators. Recall that stereo audio signals are returned in an
array of two channels (left and right)

Sum Two Audio Signals

• We can use the same principle to some two audio signals. In the
example below, the sum of the two signals produces an audio signal
with 400Hz and 600Hz in the left speaker and 800Hz and 1000Hz in
the right speaker.
• The sum of the two arrays evaluates to an array representing the left

channel audio and right channel audio.

var sig1 = [SinOsc.ar(400), SinOsc.ar(800)]
var sig2 = [SinOsc.ar(600), SinOsc.ar(1000)]
sig1 + sig2

Sawtooth Wave in Code

~saw = {
arg freq = 300, fundAmp = 0.2;
var numHarmonics = 25;
var sig = [0, 0];

for(1, numHarmonics, { |n| // harmonic number
// add an array of two sines wave
sig = sig + SinOsc.ar(freq * n ! 2, 0, fundAmp/n)

});

sig // return value is the array for left/right speaker
};

LFSaw and Saw

• SuperCollider provides two different UGens to create saw waves.
• One is Saw and the other is LFSaw.

• Saw is a band limited oscillator. More on that when we discussing aliasing.
• LFSaw is a non-bandlimited oscillator.
• For now, band limited oscillators have fewer harmonics. But we won’t hear

too much of a difference, if any.

~saw.play(args: [\freq, 300,
\funAmp, 0.1]);

{LFSaw.ar(300, 0, 0.1)!2}.play;
{Saw.ar(300, 0.1)!2}.play;

Aside: Caveats with Functions that use .play

• Avoid using UGens defined outside the context of a function.
• The below example seems like it should work perfectly fine but will

fail silently.

// Buggy!!
var test = SinOsc.ar(440, mul: 0.1);
{test}.play;

Aside: Caveats with Functions that use .play

• In general, you should be careful when using loops and conditionals
inside a function that will later use the .play method
• Here is a seemingly innocuous snippet of code:

~buggy = {
|whichOne| // A boolean as argument
if (whichOne, {

SinOsc.ar(440);
}, {

Pulse.ar(440);
});

};

Aside: Caveats with Functions that use .play

• The issue with the previous code is that the server scsynth can only handle
mathematical calculations. Booleans are not allowed. Sclang describes
calculations that the server will perform in the future.
• Because the previous code uses a conditional to choose between two

UGens, a boolean is unfortunately necessary.
• This specific error is called “Non-Boolean in test”
• For more info on this particular issue visit here:

http://supercollider.sourceforge.net/wiki/index.php/If_statements_in_a_Sy
nthDef
• You can use conditionals/loops that evaluate to numerical results (see

Triangle Wave example)

http://supercollider.sourceforge.net/wiki/index.php/If_statements_in_a_SynthDef

Aside: Caveats with Functions that use .play

(

~buggySaw = {

arg freq = 300, funAmp = 0.6, numHarms = 30;

var sig = {

|i| // One less than the harmonic num which are one indexed (not zero)

SinOsc.ar(freq * (i + 1), 0, funAmp/(i + 1)) // Freq and amp come from harmonic number

}.dup(numHarms).sum;

sig ! 2; // Return the stereo signal. ! equivalent to dup.

};

)

Someone has the great idea of innocuously attempting to abstract our previous
saw function by allowing a parameter that determines the number of harmonics in
the wave.

Aside: Caveats with Functions that use .play

• What went wrong with the previous example?
• The server needs to know exactly how many UGens are needed for a

given function.
• Dynamically allocating UGens at runtime is not allowed by the server.
• For more information on the topic, please visit

https://supercollider.github.io/tutorials/error-primitive-basicnew-
failed

https://supercollider.github.io/tutorials/error-primitive-basicnew-failed

Triangle Wave

• Harmonics: only odd numbered harmonics
• Amplitude: 1/(Harmonic Number)^2
• Phase: Every other harmonic is 180 degrees out of phase

Triangle Wave

𝑔 𝑡 = $
$%&

'

(−1)$
𝐴
𝑛(sin(2𝜋𝑓𝑛𝑡)

where 𝑛 = 2𝑖 − 1

This summation makes use of the fact that −sin 𝑥 = sin(𝑥 + 𝜋) to handle
alternating odd harmonics 180 degrees out of phase.

Triangle Wave in Code

~triangle = {
arg freq = 300, fundAmp = 0.3;
var numHarmonics = 30;
var sig = [0, 0];

for(1, numHarmonics, {
|i|
var n = 2 * i - 1; // Create the harmonic number
var phase = if(i % 2 == 0, {0}, {pi}); // Alternate phase
sig = sig + SinOsc.ar(freq * n, phase, fundAmp * (1/n.squared));

});

sig
}

Note: The if statement is okay here
because the true and false
expressions evaluate to numerical
values!

Square Wave

• Harmonics: Odd Numbered Harmonics
• Amplitudes: 1/Harmonic Number
• Phase: All harmonics in phase

Exercise: Square Wave in Code

~square = {
arg freq = 300, fundAmp = 0.3;
var numHarmonics = 30;
var sig = [0, 0];

for(1, numHarmonics, {
|i|
var n = 2 * i - 1; // Create the harmonic number
sig = sig + SinOsc.ar(freq * n, 0, fundAmp/n);

});

sig
}

Exercise: Write the partials of a square wave

Write the partials of a square wave using summation notation. Recall
that a square wave has only odd harmonics, the amplitudes of the
harmonics are (1/harmonic number), and all harmonics are in phase.

𝐴"
'()

*
sin(2𝜋𝑛𝑓𝑡)

𝑛
𝑛 = 2𝑖 − 1. The positive integers
for 𝑖 produce the harmonics (i.e.,
𝑛) of 1, 3, 5, 7, etc.

Exercise: Adjust the Phase of a Square Wave

• Adjust the phase of a square wave of 𝑓 = 1 by 0.5 seconds by shifting
the square wave of frequency 𝑓 to the right.

𝑔 𝑡 = 𝐴7
!"#

$
sin(2𝜋𝑛𝑡)

𝑛

ℎ 𝑡 = 𝑔(𝑡 − 0.5)

ℎ 𝑡 = 𝐴7
!"#

$
sin(2𝜋𝑛(𝑡 − 0.5))

𝑛What would the result
of 𝑔 𝑡 + ℎ(𝑡) be?

Original Signal

ℎ 𝑡 = 𝐴7
!"#

$
sin(2𝜋𝑛𝑡 − 𝜋𝑛)

𝑛

New Signal

ANSWER: 0!

Pulse/Rectangle Wave

• Pulse waves or rectangle waves are generalizations of the square
waves.
• A square wave’s period has equal portion at high and low amplitudes.

In a rectangle wave, those proportions need not be equal. Therefore,
all square waves are rectangle waves but not vice versa.

Pulse/Rectangle Waves

• We call the duty cycle the proportion of the wave’s period at a high amplitude.
The duty cycle ranges from 0 to 1.

• Categorizing the relative strengths of the harmonics can be complicated for a
rectangle wave. If your curious, check out the Wikipedia page on pulse waves
which details the Fourier transform of the pulse wave into its constituent sine
waves: https://en.wikipedia.org/wiki/Pulse_wave

Duty Cycle

A square wave’s duty cycle is 0.5,
meaning that 50% of the wave’s
period is at a high amplitude.

https://en.wikipedia.org/wiki/Pulse_wave

Pulse/Rectangle Waves

The equation for a Pulse wave is more complicated but it still relies
upon summing sinusoids (in this case cosine waves). Note that the sine
in this equation is simply a scaling factor for amplitude as it is not a
function of time.

𝑔 𝑡 = 𝑑𝐴 + %
,-(

.
2𝐴
𝜋𝑛

sin(𝜋𝑑𝑛) cos(2𝜋𝑓𝑛𝑡)

Pulse Wave in Code

~pulse = {
arg freq = 300, fundAmp = 0.2, d = 0.5;
var numHarmonics = 30;
var sig = [0, 0];

for(1, numHarmonics, {
|n| // harmonic number
var harmonic = (2 * fundAmp)/(pi * n) * (n * pi * d).sin * SinOsc.ar(freq * n, pi/2);
sig = sig + harmonic;

});

(d * fundAmp) + sig // 2/pi multiplies each element in the array
}

Triangle/Rectangle Wave in SuperCollider

• SuperCollider offers one kind of triangle wave, a non-bandlimited
UGen called LFTri
• SuperCollider offers two kinds of pulse wave generators

• The class LFPulse – a non-bandlimited pulse wave
• The class Pulse – a bandlimited pulse wave
• Note that in both of these UGens the duty cycle is called width

• Check out the UGen Klang which offers a bank of sine waves that can
be useful for creating your own waves via additive synthesis.

Visualizing Waveforms

• SuperCollider provides two ways for visualizing your waveforms.
• The method .plot -> This can be applied to any function that returns a

UGen
• This will plot the waveform and will be helpful for you on assignments to verify

that the waveform you are trying to produce is actually the waveform you are
using

• The class FreqScope -> Monitors audio output by analyzing the
frequency spectrum
• Not a method. You need to create a new FreqScope object which will bring up a

GUI display
• The FreqScope will display all frequencies in the output audio and their relative

strength.

Experiment

• We’ve introduced the notion of band limited oscillators. Oscillator is
simply another term for periodic waveforms.
• The class LFTri is a non-band limited oscillator, meaning that it has

all the harmonics in our audible frequency spectrum (20Hz to
20000Hz).
• With our ~triangle oscillator that we made using additive synthesis ,

let’s change the number of harmonics from 20 to 5. So here we will
severely bandlimit our triangle wave.
• Now let’s compare how they sound. Do we hear an audible

difference? Then, let’s compare using a FreqScope.

~triangle = {
arg freq = 300, fundAmp = 0.3;
var numHarmonics = 30;
var sig = [0, 0];

for(1, numHarmonics, {
|i|
var n = 2 * i - 1; // Create the harmonic number
var phase = if(i % 2 == 0, {0}, {pi}); // Alternate phase
sig = sig + SinOsc.ar(freq * n, phase, fundAmp * (1/n.squared));

});

sig
}

f = FreqScope.new;
~triangle.play(args: [\freq, 400, \fundAmp, 0.4]);
{LFTri.ar(400, 0, 0.6) ! 2}.play;

Analysis

• You can see that the frequency spectrum of our band limited Triangle
wave is missing many of the upper harmonics that LFTri has.
• How does this affect our perception of the sound?

• More harmonics tend to have “buzzier” sound to them
• With only five harmonics our triangle wave can sound more muted and

maybe even "duller” in sound (i.e., less bright)
• No difference in terms of pitch. We still perceive the same fundamental

frequency but the change in partials affects how perceive the timbre of the
two oscillators

Examples in Music

• These waveforms are ubiquitous in all popular music.
• Square Wave

• E.T. by Katy Perry ft. Kanye – the 16th note synth lead
• Sine Wave

• Big Poppa by The Notorious B.I.G. – the high lead
• Sawtooth Wave

• Head like a Hole by Nine Inch Nails – bass line synth
• Triangle Wave

• Flashlight by Parliament – high lead; the bass line is a square wave
• Any song with synthesizers is more than likely using one of these basic

waveforms as its initial sound source and then processes them with a
variety of effects.

https://www.youtube.com/watch?v=t5Sd5c4o9UM
https://www.youtube.com/watch?v=phaJXp_zMYM
https://www.youtube.com/watch?v=ao-Sahfy7Hg
https://www.youtube.com/watch?v=bWurqD68u70

In Summary

• Any periodic signal can be constructed from a sum of sine waves
• The process of creating complex sounds from sine waves or other constituent parts is

called additive synthesis
• The sine wave, sawtooth wave, pulse wave, and triangle waves are classic

waveforms since the advent of electronic music
• They are used everywhere in the music we hear today and were/are the basis of

many synthesizers
• Sawtooth waves, pulse waves, and triangle waves come in bandlimited and

non-bandlimited forms
• Non-bandlimited forms can be produce strange artifacts at higher frequencies (see

aliasing coming up)
• Bandlimited forms are “safer” but are not as rich harmonically – they are not true

representation of the waveforms

