Comparing Two Versions of Selection Sort

Same idea, different implementation. Is it important?

public void selectionSort (int[] data) {
 int maxNum; // max integer
 int maxIndex; // index of max integer
 int i, j;
 for (j = data.length - 1; j > 0; j--) {
 maxIndex = 0;
 maxNum = data[0];
 for (i = 1; i <= j; i++)
 if (data[i] > maxNum) {
 maxNum = data[i];
 maxIndex = i;
 }
 swap(data, maxIndex, j);
 }
}

static void swap (int[] data, int i, int j) {
 //exchanges the contents of data[i] and data[j]
 int temp = data[i];
 data[i] = data[j];
 data[j] = temp;
}

public void selectionSort (int[] theArray, int n) {
 for (int last = n-1; last >= 1; last--) {
 int largest = indexOfLargest(theArray, last+1);
 int temp = theArray[largest];
 theArray[largest] = theArray[last];
 theArray[last] = temp;
 }
}

private static int indexOfLargest (int[] theArray, int size) {
 int indexSoFar = 0;
 for (int currIndex = 1; currIndex < size; ++currIndex) {
 if (theArray[currIndex] > theArray[indexSoFar]) {
 indexSoFar = currIndex;
 }
 }
 return indexSoFar; // index of largest item
Comparing Different Sorting Algorithms

Both algorithms sort correctly. Is one better than the other?

public void selectionSort(int[] data) {
 int maxNum; // max integer
 int maxIndex; // index of max integer
 int i, j;
 for (j = data.length - 1; j > 0; j--) {
 maxIndex = 0;
 maxNum = data[0];
 for (i = 1; i <= j; i++)
 if (data[i] > maxNum) {
 maxNum = data[i];
 maxIndex = i;
 }
 swap(data, maxIndex, j);
 }
}

void swap(int[] data, int i, int j) {
 // exchanges the contents
 // of data[i] and data[j]
 int temp = data[i];
 data[i] = data[j];
 data[j] = temp;
}

Comparing any Two Algorithms

Algorithms solving two different problems. Is one problem harder than the other?

public void solveTowers(int n, char source, char dest, char spare) {
 if (n==1)
 System.out.println("Move top disk from "+source+" to "+dest);
 else {
 solveTowers(n-1, source, spare, dest);
 solveTowers(1, source, dest, spare);
 solveTowers(n-1, spare, dest, source);
 }
}

public void selectionSort(int[] data) {
 int maxNum; // max integer
 int maxIndex; // index of max integer
 int i, j;
 for (j = data.length - 1; j > 0; j--) {
 maxIndex = 0;
 maxNum = data[0];
 for (i = 1; i <= j; i++)
 if (data[i] > maxNum) {
 maxNum = data[i];
 maxIndex = i;
 }
 swap(data, maxIndex, j);
 }
}

void swap(int[] data, int i, int j) {
 // exchanges the contents
 // of data[i] and data[j]
 int temp = data[i];
 data[i] = data[j];
 data[j] = temp;
}
Determining the Efficiency of Algorithms

• What is an efficient algorithm?
 – Faster is better
 • How do you measure time? Wall clock? Computer clock?
 – Using less space is better
 • And if you need to get data in/out of main memory it takes time

• Algorithm efficiency should be independent of
 – Specific implementations and coding tricks
 (programming language, control statements)
 – Specific Computers (hardware chip, OS, clock speed)

• But size of data should matter
 • But particular set of data should not matter

• Analysis of algorithms
 – Is a major field that provides math tools for evaluating
 the efficiency of various algorithmic solutions to problems

Execution Time of Algorithms

• Count an algorithm's operations to assess its efficiency
• An algorithm’s execution time is related to the
 number of operations it requires in a worst case scenario
• Examples of worst case scenarios
 • Searching a linked list
 • Operations: about as many as elements
 • Selection sort
 • Operations: as we go through the array to select the next minimum, we traverse
 most of the array again
 • The Towers of Hanoi
 • Operations: to solve an instance of n disks, we need to solve 2 instances of n-1 disks…
• We could consider an average case scenario, but it's harder
Single-statement Execution

- A statement that the computer can execute in one or a few (fixed number of) instructions, we count it as 1 step:

 \[O(1) = \text{“order of one”} \]

- This includes arithmetic operations, logical operations, assignments, but not necessarily function calls, recursive steps, etc.

- For example:

```c
// code with O(1) steps
int i = 100;
if ( (i < n) && (n%2 == 0) ) {
    i = i/n;
} else {
    i = (i+1)/x*2;
}
```

Each of these statements is O(1).

Thus the overall order of this piece of code is

\[k * O(1) = O(1) \]

where \(k \) is the number of individual statements

Analyzing Single Loop Execution

- Need to determine how often a set of statements gets executed to determine the order of an algorithm

- To analyze loop execution, first determine the order of the body of the loop, and then multiply that by the number of times the loop will execute

```c
for (int i = 0; i < n; i++)
{
    counter++;
    // some sequence of O(1) steps
}
```

The loop executes \(n \) times, and the body of the loop is O(1).

Thus the overall order is

\[O(n) * O(1) = O(n) \]
Analyzing Nested Loop Execution

When loops are nested, we must multiply the complexity of the outer loop by the complexity of the inner loop.

```java
for (int i = 0; i < n; i++)
    for (int j = 0; j < n; j++)
    {
        // some sequence of O(1) steps
    }
```

Both the inner and outer loops have complexity of \(O(n)\). When multiplied together, the order becomes \(O(n^2)\).

Analyzing Recursive Algorithms

Determining the order of a recursive algorithm

- determine the order of the recursion (# of times recursive definition is followed) and multiply it by the order of the body of the recursive method.

Example: Consider the recursive method to compute the product of integers from 1 to some \(n > 1\).

```java
public int fact (int n){
    int result;
    if (n == 1)
        result = 1;
    else
        result =
            n * fact(n-1);
    return result;
}
```

Size of the problem is \(n\), the number of values to be multiplied.

Operation of interest is the multiplication operation.

The body of the method performs one multiplication and therefore is \(O(1)\).

Each time the recursive method is invoked, \(n\) is decreased by 1, thus...

...the recursive method is called \(n\) times.

The order of the entire algorithm is \(O(n)\).
Algorithm Growth Rates

- An algorithm’s time requirements can be measured as a function of the problem size n

- Function’s growth rate enables the comparison between algorithms
 - Examples
 - Searching a sorted array requires time proportional to $\lg n$
 - Searching a list requires time proportional to n
 - Selection sort requires time proportional to n^2

- Notation: Big-Oh aka “order of”
 - Searching a sorted array requires time $O(\lg n)$
 - Searching a list requires time $O(n)$
 - Selection sort requires time $O(n^2)$

- Algorithm efficiency is typically a concern for large problems only (as n grows…)

Comparison of Growth Rates

<table>
<thead>
<tr>
<th>Function</th>
<th>$n=10$</th>
<th>$n=100$</th>
<th>$n=1,000$</th>
<th>$n=10,000$</th>
<th>$n=100,000$</th>
<th>$n=1,000,000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\log_2 n$</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>13</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>n</td>
<td>10</td>
<td>10^2</td>
<td>10^3</td>
<td>10^4</td>
<td>10^5</td>
<td>10^6</td>
</tr>
<tr>
<td>$n \cdot \log_2 n$</td>
<td>30</td>
<td>664</td>
<td>9,965</td>
<td>10^5</td>
<td>10^6</td>
<td>10^7</td>
</tr>
<tr>
<td>n^2</td>
<td>10^2</td>
<td>10^4</td>
<td>10^6</td>
<td>10^8</td>
<td>10^{10}</td>
<td>10^{12}</td>
</tr>
<tr>
<td>n^3</td>
<td>10^3</td>
<td>10^6</td>
<td>10^9</td>
<td>10^{12}</td>
<td>10^{15}</td>
<td>10^{18}</td>
</tr>
<tr>
<td>2^n</td>
<td>10^3</td>
<td>10^{10}</td>
<td>10^{11}</td>
<td>10^{10}</td>
<td>10^{101}</td>
<td>10^{103}</td>
</tr>
</tbody>
</table>

Graph showing growth rates for different functions.
Order-of-Magnitude Analysis and “Big-Oh”

• Definition of the order of an algorithm:

 Algorithm A is order f(n), denoted $A = O(f(n))$, if constants k and n_0 exist such that A requires no more than $k \cdot f(n)$ time units to solve a problem of size $n \geq n_0$.

• Growth-rate function
 – A mathematical function used to specify an algorithm’s order in terms of the size of the problem.

• “Big-Oh” notation
 – A notation that uses the capital letter O to specify an algorithm’s order.
 – Example: $O(n)$, $O(n^2 \log n)$, $O(n^4)$, in general, $O(f(n))$.

Order of growth of some common functions

$$O(1) < O(\log_2 n) < O(n) < O(n \cdot \log_2 n) < O(n^2) < O(n^3) < O(2^n)$$

Note that $<$ is not the arithmetic “less than” but means “smaller order”.

Where would you place:
$O(n^6)$?
$O((\log_2 n)^2)$?
Order-of-Magnitude Analysis and “Big-Oh”

Properties of growth-rate functions

- Summing orders is dominated by the larger order
 \[O(f(n)) + O(g(n)) = O(f(n) + g(n)) = O(\max\{f(n),g(n)\}) \]
- Therefore you can ignore low-order terms
 \[O(n^2 + n) = O(n^2) \]

- Multiplying orders means multiplying terms
 \[O(f(n)) \times O(g(n)) = O(f(n) \times g(n)) \]
- Therefore you can ignore multiplicative constants
 \[O(12\times n^2) = O(n^2) \]

What is the running time?

```java
/**
 * Adds a CD to the collection of n CDs, increasing the
 * size of the collection if necessary
 */

public void addCD (String title, String artist, double cost, int tracks) {
    if (count == collection.length)
        increaseSize();
    collection[count] = new CD(title, artist, cost, tracks);
    totalCost += cost;
    count++;
}
```
/**
 * Increases the capacity of the collection by
 * creating a larger array and copying
 */

private void increaseSize()
{
 CD[] temp = new CD[collection.length * 2];
 for (int cd = 0; cd < collection.length; cd++)
 {
 temp[cd] = collection[cd];
 }
 collection = temp;
}

Worst Case and Average Case Analyses

• An algorithm can require different times to solve different problems of the same size

 – Worst-case analysis
 • A determination of the maximum amount of time that an algorithm requires to solve problems of size n
 • Big-O uses worst-case analysis

 – Average-case analysis
 • A determination of the average amount of time that an algorithm requires to solve problems of size n
Keeping your Perspective

- Throughout the course of an analysis, keep in mind that you are interested only in **significant differences** in efficiency.

- When choosing an ADT's implementation, consider **how frequently** particular ADT operations occur in a given application.

- Some seldom-used but **critical** operations must be efficient.

- If the problem size is always small, you can probably ignore an algorithm's efficiency.

- Weigh the **trade-offs** between an algorithm's time requirements and its memory requirements.

- Compare algorithms for both style and efficiency.

- Order-of-magnitude analysis focuses on large problems.