• Analysis of algorithms
 - Major field that provides tools for evaluating the efficiency of different solutions

• What is an efficient algorithm?
 - Faster is better
 - How do you measure time? Wall clock? Computer clock?
 - Using less space is better
 - But if you need to get data out of main memory it takes time

• Algorithm analysis should be independent of
 - Specific implementations and coding tricks (programming language, control statements)
 - Specific Computers (hardware chip, OS, clock speed)
 - Particular set of data

 - But size of data should matter

Same idea, different implementation. Is it important?
public void selectionSort (int[] data) {
 int maxNum; // max integer
 int maxIndex; // index of max
 int i, j;
 for (j = data.length - 1; j > 0; j--) {
 maxIndex = 0;
 maxNum = data[0];
 for (i = 1; i <= j; i++)
 if (data[i] > maxNum) {
 maxNum = data[i];
 maxIndex = i;
 }
 swap(data, maxIndex, j);
 }
}

void swap (int[] data, int i, int j) {
 // exchanges the contents of
 // data[i] and data[j]
 int temp = data[i];
 data[i] = data[j];
 data[j] = temp;
}

public void solveHanoiTowers (int n, char source, char dest, char spare) {
 if (n==1)
 System.out.println("Move top disk from " + source + " to " + dest);
 else {
 solveTowers(n-1, source, spare, dest);
 solveTowers(1, source, dest, spare);
 solveTowers(n-1, spare, dest, source);
 }
}

Algorithms solving two different problems.
Is one more difficult than the other?

• Counting an algorithm’s operations is a good way to assess its efficiency
 • An algorithm’s execution time is related to the number of operations it requires in a worst case scenario
 • Examples of worst case scenarios
 • Searching a linked list
 • Operations: about as many as elements
 • Selection sort
 • Operations: as we go through the array to select the next minimum, we traverse most of the array again
 • The Towers of Hanoi
 • Operations: to solve an instance of n disks, we need to solve 2 instances of n-1 disks...
 • We could also consider an average case scenario, but is harder...

• Need to determine how often a set of statements gets executed to determine the order of an algorithm
 • To analyze loop execution, first determine the order of the body of the loop, and then multiply that by the number of times the loop will execute

for (int i = 0; i < n; i++) {
 // some sequence of O(1) steps
}

The loop executes n times, and the body of the loop is O(1).
Thus the overall order is O(n) * O(1) = O(n)

• A statement that the computer can execute in one or a few (fixed number of) instructions, we count it as 1 step:
 \[O(1) = \text{"order of one"} \]
• This includes arithmetic, logical operations, assignments, but not necessarily function calls, recursive steps, etc.
• For example:

// code with O(1) steps
int i = 100;
if ((i < n) && (n%2 == 0)) {
 i = i/n;
} else {
 i = (i+1)/x*2;
}

Each of these statements is considered O(1).
Thus the overall order of this piece of code is
\[k \cdot O(1) = O(1) \]
where k is the number of individual statements
• When loops are nested, we must multiply the complexity of the outer loop by the complexity of the inner loop

```java
for (int i = 0; i < n; i++)
    for (int j = 0; j < n; j++)
    {
        // some sequence of O(1) steps
    }
```

Both the inner and outer loops have complexity of $O(n)$

When multiplied together, the order becomes $O(n^2)$

• Determining the order of a recursive algorithm
 • determine the order of the recursion (# of times recursive definition is followed) and multiply it by the order of the body of the recursive method

 • Example: Consider the recursive method to compute the product of integers from 1 to some $n > 1$

```java
public int fact (int n)
{
    int result;
    if (n == 1)
        result = 1;
    else
        result = n * fact(n-1);
    return result;
}
```

<table>
<thead>
<tr>
<th>Size of the problem is n, the number of values to be multiplied</th>
<th>Operation of interest is the multiplication operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each time the method performs one multiplication and therefore is $O(1)$</td>
<td>...the recursive method is invoked, n is decreased by 1, thus...</td>
</tr>
<tr>
<td>...the recursive method is called n times</td>
<td>The order of the entire algorithm is $O(n)$</td>
</tr>
</tbody>
</table>

• An algorithm’s time requirements can be measured as a function of the problem size n

• Growth rate enables the comparison between algorithms
 - Examples
 • Searching a sorted array requires time proportional to $\log n$
 • Searching a list requires time proportional to n
 • Selection sort requires time proportional to n^2

 - Notation: Big-Oh aka “order of”
 • Searching a sorted array requires time $O(\log n)$
 • Searching a list requires time $O(n)$
 • Selection sort requires time $O(n^2)$

• Algorithm efficiency is typically a concern for large problems only (as n grows...)

• Examples
 - Searching a sorted array requires time $O(\log n)$
 - Searching a list requires time $O(n)$
 - Selection sort requires time $O(n^2)$

- Algorithm efficiency is typically a concern for large problems only (as n grows...)

```
```
• Definition of the order of an algorithm
 Algorithm A is order $f(n)$, denoted $O(f(n))$, if constants k and n_0 exist such that A requires no more than $k \cdot f(n)$ time units to solve a problem of size $n \geq n_0$

• Growth-rate function
 – A mathematical function used to specify an algorithm’s order in terms of the size of the problem

• “Big-Oh” notation
 – A notation that uses the capital letter O to specify an algorithm’s order
 – Example: $O(n)$, $O(n^2 \log n)$, $O(n^4)$, in general, $O(f(n))$

• Order of growth of some common functions
 $O(1) < O(\log_2 n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n)$

• Properties of growth-rate functions
 – Summing orders is dominated by the larger order
 $O(f(n)) + O(g(n)) = O(f(n) + g(n)) = O(\max\{f(n), g(n)\})$
 – Therefore you can ignore low-order terms
 $O(n^2 + n) = O(n^2)$
 – Multiplying orders means multiplying terms
 $O(f(n)) \cdot O(g(n)) = O(f(n) \cdot g(n))$
 – Therefore you can ignore a multiplicative constant in the high-order term
 $O(12 \cdot n^2) = O(n^2)$

```java
/**
 * Adds a CD to the collection of n CDs, increasing the
 * size of the collection if necessary
 */
public void addCD(String title, String artist, double cost,
                   int tracks) {
    if (count == collection.length)
        increaseSize();
    collection[count] = new CD(title, artist, cost, tracks);
    totalCost += cost;
    count++;
}
```

```java
/**
 * Increases the capacity of the collection by
 * creating a larger array and copying
 */
private void increaseSize(){
    CD[] temp = new CD[collection.length * 2];
    for (int cd = 0; cd < collection.length; cd++)
        temp[cd] = collection[cd];
    collection = temp;
}
```
• An algorithm can require different times to solve different problems of the same size

 - **Worst-case analysis**
 - A determination of the maximum amount of time that an algorithm requires to solve problems of size n

 - **Average-case analysis**
 - A determination of the average amount of time that an algorithm requires to solve problems of size n

• Throughout the course of an analysis, keep in mind that you are interested only in **significant differences** in efficiency

• When choosing an ADT’s implementation, consider **how frequently** particular ADT operations occur in a given application

• Some seldom-used but **critical** operations must be efficient

• If the problem size is always small, you can probably ignore an algorithm’s efficiency

• Weigh the **trade-offs** between an algorithm’s time requirements and its memory requirements

• Compare algorithms for both style and efficiency

• Order-of-magnitude analysis focuses on large problems