Exam to be handed out next Thursday after class and return it Sunday night at 11:59 PM

Declare in advance if you prefer to take the exam earlier:
Take copy on Monday after class and return it on Wednesday night at 11:59 PM

Read the whole exam immediately, start thinking about it!
You can ask your instructors electronically

Reading LDC 19.5

• Strongly Connected: A graph for which there is a directed path from any node to any other node

• Is this graph strongly connected?

• Strongly connected component: A strongly connected sub-graph

• Can you find the strongly connected components of this graph?

• Directed Graph of Nodes and Arcs
 • Nodes = web pages
 • Arcs = hyperlinks from a page to another

• A graph can be explored
• A graph can be indexed
Traversing the Web

- The web can be considered a graph "the web graph"
- Web pages are the graph nodes
- Hyperlinks on pages are graph arcs
- The web graph is huge (way over one million billions nodes) - maybe infinite (pages are created on the fly)
- For traversing the web graph, DFS is not a good strategy. (Why?)

The shape of the Web is ... a "bow-tie"(!)

BFS(v) pseudocode

// BFS traversal starting at v
Initialization:
Mark all vertices as unvisited
enqueue v onto a new queue Q
Mark v as visited
While (Q is not empty)
- dequeue a vertex w from Q
 - For each unvisited vertex u adjacent to w:
 - enqueue u onto Q
 - Mark u as visited

BFS from S to G:
The BFS tree shows the visits
How do you remember the path?

Breadth First Example: BFS(9)

Queue: 9 6 7 8 3 4 5 1 2
Iterator:

How do you remember the path?

Initialization: enqueue path [S] in Q
While you have not reached G
dequeue a path from BFS queue and
check the last node x in the path
extend the path to unvisited neighbors of x
and enqueue extended paths to back of Q.
Dependency Graph on a DAG

- Defined on a Directed Acyclic Graph (a “DAG”)
- Usually reflect dependencies or requirements
 - I.e., Assembly lines, Supply lines, Organizational charts, ...
 - BTW: You cannot take 231 after 230 unless...
- Understanding dependencies requires “topological sorting”

Resolving DAG Dependencies

- Topological order
 - A list of vertices in a DAG such that vertex \(x \) precedes vertex \(y \) iff there is a directed edge from \(x \) to \(y \) in the graph
 - There may be several topological orders in a given graph
- Topological sorting
 - Arranging the vertices into a topological order

Topological Sorting Algorithm

- Select a vertex \(v \) that has **no predecessor**
- Remove \(v \) from the graph (along with all associated arcs),
- Add \(v \) to the end of a list of vertices \(L \)
- Repeat previous steps
- When the graph is empty, \(L \)’s vertices will be in topological order
A(nother) Topological Sorting Algorithm

- Select a vertex \(v \) that has no successor
- Remove \(v \) from the graph (along with all associated arcs),
- Add \(v \) to the beginning of a list of vertices \(L \)
- Repeat previous steps
- When the graph is empty, \(L \)’s vertices will be in topological order

Assuming you began at node a, give the order of traversal if you visited every node.

For DFS:

For BFS:

Give two different possible topological sorts of this graph: