Quicksort

CLRS Reading: Sections 7.1, 7.2, pages 170 – 179
Partitioning

Partition(A, p, r)

\[x = A[r] \quad // \text{serves as pivot} \]
\[i = p - 1 \]

for \(j = p \) to \(r - 1 \)

if \(A[j] \leq x \)

\[i = i + 1 \]

exchange \(A[i] \) with \(A[j] \)

exchange \(A[i + 1] \) with \(A[r] \)

return \(i + 1 \)

At the beginning of each iteration,

1. If \(p \leq k \leq i \), then \(A[k] \leq x \).
2. If \(i + 1 \leq k \leq j - 1 \), then \(A[k] > x \).
3. If \(k = r \), then \(A[k] = x \).

*Remember, we must show initialization; maintenance; and termination.
Maintaining Loop Invariant

Partition(A, p, r)
$\begin{align*}
 x &= A[r] \\
 i &= p-1 \\
 \text{for } j = p \text{ to } r-1 \\
 \text{if } A[j] \leq x & \rightarrow i = i+1 \\
 \text{exchange } A[i] \text{ with } A[j] \\
 \text{exchange } A[i+1] \text{ with } A[r] \\
 \text{return } i+1
\end{align*}$

Running Time of Partition

Partition(A, p, r)
$\begin{align*}
 x &= A[r] \quad \text{// serves as pivot} \\
 i &= p-1 \\
 \text{for } j = p \text{ to } r-1 \\
 \text{if } A[j] \leq x & \rightarrow i = i+1 \\
 \text{exchange } A[i] \text{ with } A[j] \\
 \text{exchange } A[i+1] \text{ with } A[r] \\
 \text{return } i+1
\end{align*}$
Correctness of Quicksort*

Quicksort(A, p, r)
if p < r
 q = Partition(A, p, r)
 Quicksort(A, p, q-1)
 Quicksort(A, q+1, r)

*By induction on the size of the subproblem, using correctness of Partition algorithm.

The Best

- Intuitively, the best we can hope for is a balanced partition.
The Worst

Intuitively, the worst we can imagine is a totally unbalanced partition:

*Could such a thing actually happen?
T(n) = T(n-1) + n

Randomized-Partition(A, p, r)
 i = Random(p, r)
 exchange A[r] with A[i]
 return Partition(A, p, r)

Randomized-Quicksort(A, p, r)
 if p < r
 q = Randomized-Partition(A, p, r)
 Randomized-Quicksort(A, p, q-1)
 Randomized-Quicksort(A, q+1, r)

Making the Worst Case Less Likely