Average Case Analysis of Quicksort

CLRS Reading: Sections 7.3, 7.4, pages 179 – 190

On Average?

- How unbalanced can the partitions become before the costs go up?
- For example, $T(n) = T(9n/10) + T(n/10) + n$
\[T(n) = T(n/10) + T(9n/10) + n \]

The running time of Quicksort is dominated by time spent in Partition.

\[H - 3 \]
Focusing on Partition

Lemma 7.1. The running time of Quicksort is $O(n + X)$, where X is the number of comparisons performed in all calls to Partition.

```plaintext
Partition(A, p, r)
    x = A[r]
    i = p - 1
    for j = p to r - 1
        if A[j] ≤ x
            i = i + 1
            exchange A[i] with A[j]
        exchange A[i+1] with A[r]
    return i + 1
```

Calculating X^*

Remark. Over the entire execution of Quicksort, each pair of elements is compared at most once.

The total number of comparisons performed by Partition over the entire execution of Quicksort.
Number of Comparisons

<table>
<thead>
<tr>
<th>Q</th>
<th>U</th>
<th>I</th>
<th>Z</th>
<th>O</th>
<th>R</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

When are two values not compared?

In general, \(z_i\) and \(z_j\) are compared if and only if the first element to be chosen as a pivot from \([z_i \ldots z_j]\) is either \(z_i\) or \(z_j\).

... but after the partition, no two elements separated by \(T\) are ever compared.

Pivot \(T\) is compared with every element, ...

\[\begin{align*}
&Q \ U \ I \ Z \ O \ R \ T \\
&Q \ I \ O \ R \ T \ Z \ U \\
&Q \ I \ O \ R \ T \ U \ Z \\
&I \ O \ Q \ R \ T \ U \ Z \\
&I \ O \ Q \ R \ T \ U \ Z
\end{align*}\]
\[X = \sum_{1 \leq i \leq n-1} \sum_{1 \leq j \leq n} X_{ij} \]

where \(X_{ij} \) is the indicator function

\[
X_{ij} = \begin{cases}
1 & \text{if } z_i \text{ is compared with } z_j \\
0 & \text{otherwise}
\end{cases}
\]

*and \(z_1, z_2, \ldots, z_n \) are the elements of \(\mathcal{A} \) in sorted order.

Average Value of \(X \)

\[
E[X] = E[\sum_{1 \leq i \leq n-1} \sum_{1 \leq j \leq n} X_{ij}] \\
= \sum_{1 \leq i \leq n-1} \sum_{1 \leq j \leq n} E[X_{ij}] \\
= \sum_{1 \leq i \leq n-1} \sum_{1 \leq j \leq n} \Pr[z_i \text{ is compared to } z_j]
\]

Here we use the fact that the average of the sum is the sum of averages.
\[E[X] = \sum_{1 \leq i \leq n-1} \sum_{i+1 \leq j \leq n} \frac{2}{j - i + 1} \]

Pr[\(z_i\) is compared to \(z_j\)] = Pr[\(z_i\) or \(z_j\) is 1st pivot chosen from \([z_i..z_j]\)]

= Pr[\(z_i\) is 1st pivot chosen from \([z_i..z_j]\)]

+ Pr[\(z_j\) is 1st pivot chosen from \([z_i..z_j]\)]

= \frac{2}{j - i + 1}

\[H_n = O(\log n) \]