Minimum Spanning Trees

CLRS Reading: Chapter 23, pages 624 -- 642

Wiring the Boston Area

CLRS Reading: Chapter 23, pages 624 -- 642
Minimum Spanning Tree Problem

Given
A connected graph $G = \langle V, E \rangle$ such that each edge $e \in E$ is assigned a non-negative weight.

Problem
Find a subset T of E such that $\langle V, T \rangle$ remains connected, and the sum of the weights of the edges is as small as possible subject to above.

Is $\langle V, T \rangle$ always a tree (i.e., an acyclic, connected graph)?

Adapting Greedy to the MST Problem

```plaintext
Greedy(C)
{C is the set of choice candidate}
S = ∅ {S the solution set}
while not solution(S) and C ≠ ∅
x = greedy-choice(C)
C = C \ {x}
if feasible(S ∪ {x})
    S = S ∪ {x}
return S
```
In Other Words

MST(G = <V,E>)

\[C = E \] \{C is the set of choice candidate\}
\[T = \emptyset \] \{T the solution set\}

while not <V,T> is connected and C ≠ \emptyset

\[x = \text{an element of } C \text{ of smallest weight} \]
\[C = C \setminus \{x\} \]

if <V,(T ∪ \{x\})> is acyclic

\[T = T ∪ \{x\} \]

return T

Kruskal’s Algorithm

Kruskal(G, w)

sort the edges by increasing weight

for each edge e on the sorted list

if e does not form a cycle with the edges already taken

include e in the spanning tree

else discard e

return resulting edge set
Kruskal in Action

![Graph with weights and distances]

Is It a Good Idea to be Greedy?

Given

A connected graph \(G = \langle V, E \rangle \) such that each edge \(e \in E \) is assigned a non-negative weight.

Problem

Find a subset \(T \) of \(E \) such that the edges of \(T \) form a simple closed path that includes every node.
Crime Does Not Pay

Things can be worse still. Is it possible that Greedy will fail to produce a tour at all? Can you give an example?

Kruskal’s Algorithm

\[\text{Kruskal}(G, w) \]

sort the edges by increasing weight

for each edge \(e \) on the sorted list

if \(e \) does not form a cycle with the edges already taken

include \(e \) in the spanning tree

else discard \(e \)

return resulting edge set

W - 10
Proof of Correctness*

Given
Let $G = <V, E>$ be a connected graph such that each edge is assigned a non-negative weight.

Problem
For all $n \leq |E|$, if Kruskal's algorithm is applied and a set T of n edges have been selected, then T is promising (i.e., can be completed to an optimal solution).

*By induction on the number of edges selected so far.

Base Case

- For $n = 0$, a set T of n edges have been selected.
- Show T is promising (i.e., can be completed to an optimal solution).
Induction Step

- Let $n < |V|-1$. Assume that Kruskal’s algorithm produces a promising set of edges T for all $|T| < n$.

- Let T be the collection of edges chosen to date.

The induction hypothesis implies that T forms a forest partitioning V into disjoint sets.

We Should Be So Lucky

- Let e be an edge of minimal weight that doesn’t form a cycle with T.

- Let T' be a minimal spanning tree of G such that T is contained in T'. If $e \in T'$, no problem.
Otherwise,

- Adding \(e \) to \(T \) creates exactly one cycle.

- Removing \(e' \) from \(T \) yields a new tree that spans \(G \) and has weight no greater than \(T \). Since \(e' \not\in T \), \(T \cup \{e\} \) is promising.
Prim’s Algorithm

Prim(G, w, r)
 for each u ∈ G.V
 u.key = ∞
 u.π = NIL
 r.key = 0
 Q = G.V
 while Q ≠ ∅
 u = Extract-Min(Q)
 for each v ∈ G.Adj[u]
 if v ∈ Q and w(u, v) < v.key
 v.π = u
 v.key = w(u, v)