Lecture 11 – Greedy algorithms

Reading: KT Section 4.1

Partial content of these slides have been obtained from the official lecture slides that accompany the textbook. A complete set of slides can be found at: http://www.cs.princeton.edu/~wayne/kleinberg-tardos/

Greedy algorithms

• An algorithm is greedy if it builds up a solution in small steps,
 • choosing a decision at each step myopically to optimize some underlying criterion.

• One can often design many different greedy algorithms for the same problem,
 • each one locally, incrementally optimizing some different measure on its way to a solution.

• When a greedy algorithm succeeds in solving a nontrivial problem optimally,
 • it typically implies something interesting and useful about the structure of the problem itself
Interval Scheduling

Interval scheduling

- Job j starts at s_j and finishes at f_j.
- Two jobs compatible if they don’t overlap.
- Goal: find maximum subset of mutually compatible jobs.
Interval scheduling: greedy algorithms

• How should we pick the next job to schedule?
• Earliest start time
• Shortest interval
• Fewest conflicts
• Earliest finish time

EARLIEST-FINISH-TIME-FIRST $(n, s_1, s_2, \ldots, s_n, f_1, f_2, \ldots, f_n)$

Sort jobs by finish time so that $f_1 \leq f_2 \leq \ldots \leq f_n$

$A \leftarrow \emptyset$

set of jobs selected

For $j = 1$ to n

If job j is compatible with A

$A \leftarrow A \cup \{ j \}$

Return A

Let's analyze!