Lecture 11 – Interval Scheduling
Reading: KT Section 4.1 and 4.2

Partial content of these slides have been obtained from the official lecture slides that accompany the textbook. A complete set of slides can be found at: http://www.cs.princeton.edu/~wayne/kleinberg-tardos/

Greedy algorithm

Greedy(C) (C is the set of choice candidate)
S = ∅ (S the solution set)
while not solution(S) and C ≠ ∅
x = greedy-choice(C)
C = C \ {x}
if feasible(S ∪ {x})
S = S ∪ {x}
return S
Greedy analysis strategies

- Greedy algorithm stays ahead.
 - Show that after each step of the greedy algorithm, its solution is at least as good as any optimal algorithm's.

- Exchange argument.
 - Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.

- Structural.
 - Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound.

Scheduling to minimize lateness

The exchange argument approach
Scheduling to minimize lateness

- Setting:
 - A single resource
 - Each job j requires t_j time units, and a deadline of d_j
 - j starts at s_j, and is done at $f_j = s_j + t_j$
 - The lateness of a job j is $l_j = f_j - d_j$

- Goal:
 - Decide on the start time of each job to minimize the maximum lateness (L)
 - $L = \max_i l_i$

Greedy algorithms to minimize lateness

- How would you order the jobs in the schedule?
Earliest deadline first

Earliest-Deadline-First \((n, t_1, t_2, \ldots, t_n, d_1, d_2, \ldots, d_n)\)

- **Sort** \(n\) jobs so that \(d_1 \leq d_2 \leq \ldots \leq d_n\).
- \(t \leftarrow 0\)
- **For** \(j = 1\) to \(n\)
 - Assign job \(j\) to interval \([t, t + t_j]\).
 - \(s_j \leftarrow t\)
 - \(f_j \leftarrow t + t_j\)
 - \(t \leftarrow t + t_j\)
- **Return** intervals \([s_1, f_1], [s_2, f_2], \ldots, [s_n, f_n]\).

Correctness – Exchange approach

What is it?
- We start with an optimal solution \(O\), and turn it into the greedy solution \(A\).

For the earliest deadline first algorithm...
- There exists an optimal schedule with no idle time.
- The earliest-deadline-first schedule has no idle time.
- The earliest-deadline-first schedule has no inversions.
- All schedules with no inversions and no idle time have the same maximum lateness.
- If a schedule (with no idle time) has an inversion, it has one with a pair of inverted jobs scheduled consecutively.
- Swapping two adjacent, inverted jobs reduces the number of inversions by one and does not increase the max lateness.

There is an optimal schedule that has no inversions and no idle time.

The schedule \(A\) produced by the greedy algorithm has optimal maximum lateness \(L\).