Lecture 16 – Dynamic Programming
Reading: KT Sections 6.1 and 6.2

Partial content of these slides have been obtained from the official lecture slides that accompany the textbook. A complete set of slides can be found at: http://www.cs.princeton.edu/~wayne/kleinberg-tardos/

Algorithm techniques

Data structures
- Use extra data structures
- Exploit the structure to improve complexity

Greedy algorithms
- Build up a solution incrementally
- Myopically optimizing some local criterion

Divide and conquer
- Break up a problem into independent subproblems
- Solve each subproblem
- Combine solutions to subproblems to form solution to original problem

Dynamic Programming
- Break up a problem into a series of overlapping subproblems
- Build up solutions to larger and larger subproblems

A bit of history

Bellman. Pioneered the systematic study of dynamic programming in 1950s.

Etymology.
- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.

Weighted Interval Scheduling problem

Weighted interval scheduling problem:
- Job \(j \) starts at \(s_j \), finishes at \(f_j \), and has weight or value \(v_j \).
- Two jobs compatible if they don’t overlap.
- Goal: find maximum-weight subset of mutually compatible jobs.
Weighted Interval Scheduling problem

Let’s try solving it

• Will greedy work?

• How about divide and conquer?

• Is there some structure in the problem that we can exploit?

Let’s define a few notions

- **Notation.** Label jobs by finishing time: j_1, j_2, \ldots, j_i.

- **Def.** $p(j)$: largest index $i < j$ such that job i is compatible with j.

 - **Ex.** $p(5) = 5, p(7) = 3, p(2) = 0$.

More notations

- **Notation.** $OPT(j)$: value of optimal solution to the problem consisting of job requests $1, 2, \ldots, j$.

- **Goal.** $OPT(n)$: value of optimal solution to the original problem.

- **Case 1.** $OPT(j)$ selects job j.
 - Collect profit v_j.
 - Can’t use incompatible jobs $\{p(j) + 1, p(j) + 2, \ldots, j - 1\}$.
 - Must include optimal solution to problem consisting of remaining compatible jobs $1, 2, \ldots, p(j)$.

- **Case 2.** $OPT(j)$ does not select job j.
 - Must include optimal solution to problem consisting of remaining jobs $1, 2, \ldots, j - 1$.

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0 \\ \max \{ v_j + OPT(p(j)), OPT(j-1) \} & \text{otherwise} \end{cases}$$
A brute force solution

What's the complexity of this algorithm?

Brute-Force (a_1, a_2, \ldots, a_n)
Sort jobs by finish time so that $f_{j_1} \leq f_2 \leq \ldots \leq f_n$.
Compute $p[1], p[2], \ldots, p[n]$.
RETURN Compute-Opt().

Compute-Opt(j)
If $j = 0$
RETURN 0.
ELSE
RETURN max { $v_j + \text{Compute-Opt}(j/1), \text{Compute-Opt}(j-1)$. }

Memoization

Top-down dynamic programming (memoization). Cache result of each subproblem; lookup as needed.

Top-Down (a_1, a_2, \ldots, a_n)
Sort jobs by finish time so that $f_{j_1} \leq f_2 \leq \ldots \leq f_n$.
Compute $p[1], p[2], \ldots, p[n]$.
M[0] = 0. \hspace{1cm} \text{global array}$
RETURN M-Compute-Opt().

M-Compute-Opt(j)
IF M[j] = undefined
M[j] = max { $v_j + \text{M-Compute-Opt}(j/1), \text{M-Compute-Opt}(j-1)$. }
RETURN M[j].

Bottom-up dynamic programming

Bottom-up dynamic programming. Unwind recursion.

Bottom-Up (a_1, a_2, \ldots, a_n)
Sort jobs by finish time so that $f_{j_1} \leq f_2 \leq \ldots \leq f_n$.
Compute $p[1], p[2], \ldots, p[n]$.
M[0] = 0. \hspace{1cm} \text{previously computed values}$
For $j = 1$ to n

Running time. The bottom-up version takes $O(n \log n)$ time.